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Background and Motivation Challenges and Our Approach Numerical Relaxation of Logic Programs
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Challenge problem in Al
Good interpretability and compositionality Periodic MCMC Sampling Help to escape local minimum Connections to Classical Datalog

An ideal model to represent the learned knowledge
Logic programs widely used in many areas
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Theorem: Each tuple weight v, varies continuously
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Empirical Evaluation Results
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a b C: & DR L Significantly outperform the state-of-the-art synthesizer Scale to a large number of templates Hybrid optimization is essential to success
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