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Rule Selection Problem

Background and Motivation

Importance of Learning Logic Programs

Challenges and Our Approach

Empirical Evaluation Results

Connections to Classical Datalog

SociaLite
BigDatalog

q How to relax logical rules?

q How to efficiently learn a relaxed program?

Numerical Relaxation of Logic Programs

Newton-Raphson Method

Periodic MCMC Sampling

Early Termination

Parallelization

Focus on the exact program synthesis 
where zero loss is achievable

Help to escape local minimum 

Not ad hoc, a systematic approach 
based on a sound separation testing

Leverage the fact of being a type of 
Las Vegas algorithm

The loss surface is still 
NOT monotonic.

This enables us to 
recover classical program.

q How to recover classical program?

Easy to modify existing Datalog
solvers with only !(1) overhead.

Performance Optimization
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Least fixed point 
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r1  path(x, y)  :- edge(x, y).  // 0.7

r2  path(x, z)  :- edge(x, y), path(y, z).  // 0.9
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v Associate each rule with a weight
v Each tuple will get a weight (depending on how it is derived)
v Turn combinatorial search into continuous optimization
v Recover the desired logic program from the optimized weights 
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Rule generation approaches
• Syntax-guided approach
• Inductive bias, e.g. meta-rules 
• Meta-rule augmentation

path(a, b)
path(b, e)
…

path(c, a)
path(d, b)
…

NP-Hard

Ø Traditionally learned using discrete combinatorial approaches
Ø Gradient-based approaches are remarkably successful in machine learning.
Ø Can gradient-based approaches greatly help to learn logical rules?

o Challenge problem in AI
o Good interpretability and compositionality
o An ideal model to represent the learned knowledge
o Logic programs widely used in many areas

Learning logical rules from relational input-output data

Search in discrete space Optimization in continuous space

path(x, y)  :- edge(x, y). 
path(x, z)  :- edge(x, y), path(y, z).
scc(x, y)   :- path(x, y), path(y, x).b

c

d

a

edge (input)

a b

b c

c d

d b

scc (output)

desired b c

undesired a d

desired c d

Big Data Analytics Networking Program Analysis

Significantly outperform the state-of-the-art synthesizer Scale to a large number of templates Hybrid optimization is essential to successa b c
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Theorem: Each tuple weight 45 varies continuously 
and monotonically increases with the rule weights M.

Theorem:  Each tuple weight 45 is non-zero if and 
only if it can be derived in the classical program.


