
Difflog: Synthesizing Datalog Programs using Numerical Relaxation
Xujie Si*, Mukund Raghothaman*, Kihong Heo, Mayur Naik (*equal contribution)

Contact: {xsi, rmukund, kheo, mhnaik}@cis.upenn.edu University of Pennsylvania https://github.com/petablox/difflog

Rule Selection Problem

Background and Motivation

Importance of Learning Logic Programs

Challenges and Our Approach

Empirical Evaluation Results

Connections to Classical Datalog

SociaLite
BigDatalog

q How to relax logical rules?

q How to efficiently learn a relaxed program?

Numerical Relaxation of Logic Programs

Newton-Raphson Method

Periodic MCMC Sampling

Early Termination

Parallelization

Focus on the exact program synthesis
where zero loss is achievable

Help to escape local minimum

Not ad hoc, a systematic approach
based on a sound separation testing

Leverage the fact of being a type of
Las Vegas algorithm

The loss surface is still
NOT monotonic.

This enables us to
recover classical program.

q How to recover classical program?

Easy to modify existing Datalog
solvers with only !(1) overhead.

Performance Optimization

Key Ideas edge(1,2)

edge(2,3)

path(2,3)

r1

path(1,3)

r2
edge(1,3)

r1

Viterbi Semiring

Set [0,1]

⨁ max

⨂ ×

Zero 0

One 1

1.0

1.0

0.7 = 0.7 ∗ 1.0

0.7

0.91.0

0.7

0.7 = max{0.7, 0.9 ∗ 1.0 ∗ 0.7}

45 =6
7

(489 ∧ 48; ∧ ⋯∧ 48=) 45 = max
7
(>7×489×48;×⋯×48=)

Least fixed point
semantic

r1 path(x, y) :- edge(x, y). // 0.7

r2 path(x, z) :- edge(x, y), path(y, z). // 0.9

Logic world Numerical world

?(>) = @
5∈BCD

(1 − 45); + @
5∈GH7

(0 − 45);

>(IJ9) = >(I) − ?(>)
∇L?(>)
∇L?(>) ;

v Associate each rule with a weight
v Each tuple will get a weight (depending on how it is derived)
v Turn combinatorial search into continuous optimization
v Recover the desired logic program from the optimized weights

I

O--

O+

a b c

d

e

Rule generation approaches
• Syntax-guided approach
• Inductive bias, e.g. meta-rules
• Meta-rule augmentation

path(a, b)
path(b, e)
…

path(c, a)
path(d, b)
…

NP-Hard

Ø Traditionally learned using discrete combinatorial approaches
Ø Gradient-based approaches are remarkably successful in machine learning.
Ø Can gradient-based approaches greatly help to learn logical rules?

o Challenge problem in AI
o Good interpretability and compositionality
o An ideal model to represent the learned knowledge
o Logic programs widely used in many areas

Learning logical rules from relational input-output data

Search in discrete space Optimization in continuous space

path(x, y) :- edge(x, y).
path(x, z) :- edge(x, y), path(y, z).
scc(x, y) :- path(x, y), path(y, x).b

c

d

a

edge (input)

a b

b c

c d

d b

scc (output)

desired b c

undesired a d

desired c d

Big Data Analytics Networking Program Analysis

Significantly outperform the state-of-the-art synthesizer Scale to a large number of templates Hybrid optimization is essential to successa b c

d

e

Theorem: Each tuple weight 45 varies continuously
and monotonically increases with the rule weights M.

Theorem: Each tuple weight 45 is non-zero if and
only if it can be derived in the classical program.

