#### Exponential Lower Bounds for Monotone Span Programs

Stephen A. Cook Toniann Pitassi **Robert Robere** Benjamin Rossman

FOCS 2016

University of Toronto

#### $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subseteq \mathsf{P}$

### $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subseteq \mathsf{P}$

Formulas



Formulas



Formulas Directed Switching Networks (Non-det. Branching Programs)



Formulas Directed Switching Networks (Non-det. Branching Programs)



Formulas Directed Switching Networks (Non-det. Branching Programs)

#### $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subseteq \mathsf{P}$

#### (Less) Familiar Picture

## $\begin{array}{c} \mathsf{CC} \\ \cup \mathsf{I} \\ \mathsf{NC^1} \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subseteq \mathsf{P} \\ \quad \mathsf{I} \\ \mathsf{SPAN}_{\mathbf{F}} \end{array}$

#### (Less) Familiar Picture

# CC $\cup I$ $NC^{1} \subseteq L \subseteq NL \subseteq NC \subseteq P$ $I \cap$ $SPAN_{F}$ /

Span Programs over field F [KW '90]



| 1 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |

What is a **Span Program** over a field **F**?

| 1 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |

Rows labelled with input literals.

| $x_1$            | 1 | 0 | 0 | 1 |
|------------------|---|---|---|---|
| $x_1$            | 0 | 0 | 1 | 0 |
| $x_2$            | 0 | 1 | 0 | 0 |
| $\overline{x_3}$ | 0 | 1 | 1 | 0 |

What is a **Span Program** over a field **F**?

| $x_1$            | 1 | 0 | 0 | 1 |
|------------------|---|---|---|---|
| $x_1$            | 0 | 0 | 1 | 0 |
| $x_2$            | 0 | 1 | 0 | 0 |
| $\overline{x_3}$ | 0 | 1 | 1 | 0 |

Accept assignment if the consistent rows span all-1s vector

16

What is a **Span Program** over a field **F**?

 $x_1$  $x_1 = \text{True}$  $x_1$  $x_2 = \text{True}$  $x_2$  $x_3 = \text{True}$  $\overline{x_3}$ 

What is a **Span Program** over a field **F**?

 $x_1$  $x_1 = \text{True}$  $\mathcal{X}_1$  $x_2 = \text{True}$  $x_2$  $x_3 = \text{True}$  $\overline{x_3}$ 

What is a **Span Program** over a field **F**?



Accept assignment if the consistent rows span all-1s vector

19

What is a **Span Program** over a field **F**?



20

What is a **Span Program** over a field **F**?



What is a **Span Program** over a field **F**?



22

What is a **Span Program** over a field **F**?

$$x_1$$
1001 $x_1$ 0010 $x_1 = False$  $x_2$ 0100 $x_2 = False$  $\overline{x_3}$ 01100

Accept assignment if the consistent rows span all-1s vector

23

#### (Less) Familiar Picture

#### CC $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subset \mathsf{P}$ SPAN<sub>F</sub>

**Span Programs** over field **F** [KW '90] Capture logspace counting classes.





#### (Less) Familiar Picture

## $\begin{array}{c} \mathsf{CC} \\ \cup \mathsf{I} \\ \mathsf{NC^1} \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subseteq \mathsf{P} \\ \quad \mathsf{I} \\ \mathsf{SPAN}_{\mathbf{F}} \end{array}$

## $\begin{array}{c} \mathsf{CC} \\ \cup \mathsf{I} \\ \mathsf{NC^1} \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subseteq \mathsf{P} \\ \quad \mathsf{I} \\ \mathsf{SPAN}_{\mathbf{F}} \end{array}$

How many separations do we have?

CC UЛ  $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subseteq \mathsf{P}$  $|()\rangle$ **SPAN**<sub>F</sub>

How many separations do we have?



How many separations do we have?

CC UЛ  $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC} \subset \mathsf{P}$  $|\cap$ **SPAN**<sub>F</sub>

Fortunately, this is easy to fix.

How many separations do we have?

$$\begin{array}{c} \mathsf{mCC} \\ \cup\mathsf{I} \\ \mathsf{mNC}^1 \varsubsetneq \mathsf{mL} \varsubsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \varsubsetneq \mathsf{mP} \\ \mathsf{I} \cap \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \end{array}$$

Fortunately, this is easy to fix.

Monotone = No Negations in Circuit Models

How many separations do we have?

### $\label{eq:mcc} \begin{array}{c} \mathsf{mCC} \\ \cup\mathsf{I} \\ \mathsf{mNC}^1 \varsubsetneq \mathsf{mL} \varsubsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \varsubsetneq \mathsf{mP} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \end{array}$



mCC UЛ  $\mathsf{mNC}^1 \subsetneq \mathsf{mL} \subsetneq \mathsf{mNL} \subsetneq \mathsf{mNC} \subsetneq \mathsf{mP}$  $|\cap$  $\mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP}$ 

## $\begin{array}{c} \mathsf{mCC} \\ \cup \mathsf{I} \\ \mathsf{mNC}^1 \subsetneq \mathsf{mL} \subsetneq \mathsf{mNL} \subsetneq \mathsf{mNC} \subsetneq \mathsf{mP} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \\ \mathbf{1} \end{array}$
### $\mathsf{mSPAN}_{\mathbf{F}}$

## [Babai et al '96] Quasipolynomial lower bounds against mNP.

### $\mathsf{mSPAN}_{\mathbf{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.

[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).

### $\mathsf{mSPAN}_{\mathbf{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.

[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).

[BW '05] Quasipolynomial against nonmonotone NC

### $\mathsf{mSPAN}_{\mathbf{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.

[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).

[BW '05] Quasipolynomial against nonmonotone NC

**Extra Motivation:** 

### $\mathsf{mSPAN}_{\mathbf{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.

[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).

[BW '05] Quasipolynomial against nonmonotone NC

Extra Motivation: Equivalent to Linear Secret Sharing Schemes (!) [KW '90]

# $\begin{array}{c} \mathsf{mCC} \\ \cup \mathsf{I} \\ \mathsf{mNC}^1 \subsetneq \mathsf{mL} \subsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \subsetneq \mathsf{mP} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \\ \mathbf{1} \end{array}$

mCC 🦵 UЛ  $mNC^1 \subsetneq mL \subsetneq mNL \subsetneq mNC \subsetneq mP$  $|\cap$  $\mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP}$ 

 $\begin{array}{c} \mathsf{Essentially nothing known!} \\ \mathsf{Exponential bounds for Clique} \\ \mathsf{MCC} & \longleftarrow \\ \mathsf{Cannot even prove it contains mNL} \\ \mathsf{or mL} \\ \mathsf{mNC}^1 \subsetneq \mathsf{mL} \gneqq \mathsf{mNL} \subsetneq \mathsf{mNC} \subsetneq \mathsf{mP} \\ \mathsf{I} \\ \mathsf{MSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \\ \end{array}$ 

## $\begin{array}{c} \mathsf{mCC} \\ \cup \mathsf{I} \\ \mathsf{mNC}^1 \varsubsetneq \mathsf{mL} \varsubsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \varsubsetneq \mathsf{mP} \\ \quad \mathsf{I} \cap \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \end{array}$

## $\begin{tabular}{l}{l} mCC \\ \cup \mathsf{I} \\ \mathsf{mNC}^1 \subsetneq \mathsf{mL} \subsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \varsubsetneq \mathsf{mP} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \end{tabular}$

**Natural Questions:** 

## $\label{eq:mcc} \begin{array}{c} \mathsf{mCC} \\ \cup \mathsf{I} \\ \mathsf{mNC}^1 \varsubsetneq \mathsf{mL} \varsubsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \varsubsetneq \mathsf{mP} \\ \quad \mathsf{I} \\ & \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \end{array}$

#### **Natural Questions:**

Can we separate mSPAN from mP? mNL?

## $\label{eq:mcc} \begin{array}{c} \mathsf{mCC} \\ \cup \mathsf{I} \\ \mathsf{mNC}^1 \varsubsetneq \mathsf{mL} \varsubsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \varsubsetneq \mathsf{mP} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \end{array}$

#### **Natural Questions:**

Can we separate mSPAN from mP? mNL?

Can we separate mCC from mP? mNL?

## $\label{eq:mcc} \begin{array}{c} \mathsf{mCC} \\ \cup \mathsf{I} \\ \mathsf{mNC}^1 \varsubsetneq \mathsf{mL} \varsubsetneq \mathsf{mNL} \varsubsetneq \mathsf{mNC} \varsubsetneq \mathsf{mP} \\ \quad \mathsf{I} \\ \mathsf{mSPAN}_{\mathbf{F}} \not\subseteq \mathsf{mP} \end{array}$

#### **Natural Questions:**

Can we separate mSPAN from mP? mNL?

Can we separate mCC from mP? mNL?

Yes --- also unify nearly all lower bounds in mP.<sup>49</sup>

 $f: \{0,1\}^n \to \{0,1\}$ 

 $f: \{0,1\}^n \to \{0,1\}$ 

monotone

























**<u>Theorem</u>** [R '90, KW '90, G '98, CPRR '16]: For any field **F**, any boolean function f, and any matrix A over **F**,  $\mu_A(f) \le \mathsf{mSPAN}_{\mathbf{F}}(f) \le \mathsf{mL}(f) \le \mathsf{mNC}^1(f)$  $\mu_A(f) \le \mathsf{mCC}(f)$ 



**<u>Theorem</u>**: There is a function f (GEN) in **mP** and a **real** matrix A such that  $\mu_A(f) \ge 2^{\Omega(N^{\varepsilon})}$ 

There is a function g (STCONN) in **mNL** and a **real** matrix B such that  $\mu_B(g) \ge N^{\Omega(\log N)}$ 

**<u>Theorem</u>**: There is a function f (GEN) in **mP** and a **real** matrix A such that  $\mu_A(f) \ge 2^{\Omega(N^{\varepsilon})}$ 

There is a function g (STCONN) in **mNL** and a **real** matrix B such that  $\mu_B(g) \ge N^{\Omega(\log N)}$ 

#### **Prior Work:**

Unified proof of many previous monotone separations between classes within P.

Simplification of mL  $\not\subseteq$  mNL [Potechin '10]

**<u>Theorem</u>**: There is a function f (GEN) in **mP** and a **real** matrix A such that  $\mu_A(f) \ge 2^{\Omega(N^{\varepsilon})}$ 

There is a function g (STCONN) in **mNL** and a **real** matrix B such that  $\mu_B(g) \ge N^{\Omega(\log N)}$ 

#### **Span Programs:**

First exponential lower bounds for monotone **span programs** and linear secret sharing schemes.

First separations between monotone **span programs** and monotone P, monotone NL

Example of a function computable by non-monotone **span programs over GF(2)**, not computable by <sup>67</sup> **monotone span programs over reals** 

**<u>Theorem</u>**: There is a function f (GEN) in **mP** and a **real** matrix A such that  $\mu_A(f) \ge 2^{\Omega(N^{\varepsilon})}$ 

There is a function g (STCONN) in **mNL** and a **real** matrix B such that  $\mu_B(g) \ge N^{\Omega(\log N)}$ 

#### **Comparator Circuits:**

First exponential lower bounds for **comparator circuits** computing a function in monotone P.

First separations between monotone **comparator circuits** and monotone P, monotone NL

Example of a function computable by non-monotone **comparator circuits**, not efficiently computable by monotone **comparator circuits** 



wikiHow to Breathe

## The Proof

## The Proof

**Previous Proofs:** 

## The Proof

#### **Previous Proofs:**

Direct combinatorial constructions
#### **Previous Proofs:**

Direct combinatorial constructions

Resulting matrices have {0,1} entries, for which we have quasipolynomial **upper** bounds [Razborov '90].

#### **Previous Proofs:**

Direct combinatorial constructions

Resulting matrices have {0,1} entries, for which we have quasipolynomial **upper** bounds [Razborov '90].

#### **Our Proof:**

#### **Previous Proofs:**

Direct combinatorial constructions

Resulting matrices have {0,1} entries, for which we have quasipolynomial **upper** bounds [Razborov '90].

#### **Our Proof:**

Prove a new **lifting theorem** to reduce the lower bound to bounding a new **algebraic query measure** on search problems.

#### **Previous Proofs:**

Direct combinatorial constructions

Resulting matrices have {0,1} entries, for which we have quasipolynomial **upper** bounds [Razborov '90].

#### **Our Proof:**

Prove a new **lifting theorem** to reduce the lower bound to bounding a new **algebraic query measure** on search problems.

Our matrices have entries in  $\mathbf{R}$ , and so we can avoid the above obstacle.

#### **Overview**



#### **Overview**



1

Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

#### Overview



1

Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

(**Lift**) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)

#### Overview





Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)

3 Actually **prove** the query lower bounds against Search(f)

#### Overview



Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

- 2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
- 3 Actually **prove** the query lower bounds against Search(f)

#### Overview



Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

82

- 2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
- 3 Actually **prove** the query lower bounds against Search(f)

#### Overview



Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

- 2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
- 3 Actually **prove** the query lower bounds against Search(f)

### The Proof Lifting Theorem

### The Proof Lifting Theorem (Communication Setting)

Search Problem S = Search(f) $S \subseteq \{0,1\}^n \times Q$ 



Hard for Weak Complexity Measure



Hard for Weak Complexity Measure

$$x \in \mathcal{A}^n, y \in \mathcal{B}^n$$

The Proof

**Lifting Theorem** 



The Proof Lifting Theorem (Communication Setting)  $x \in \mathcal{A}^n, y \in \mathcal{B}^n$  $S(g(x_1, y_1), \dots, g(x_n, y_n))$ 

Compose S with some two input function g

Alice gets x inputs Bob gets y inputs

Hard for Weak Complexity Measure



The Proof Lifting Theorem (Communication Setting)  $\mathcal{B}^n$  $x \in \mathcal{A}^n, y \in \mathcal{B}^n$  $S(q(x_1, y_1), \ldots, q(x_n, y_n))$ Communication  $\mathcal{A}^n$ Matrix Compose S with some two input function g

Alice gets x inputs

Bob gets y inputs

Hard for Weak Complexity Measure Hard for Strong Complexity Measure The Proof Lifting Theorem (Our Setting) The Proof Lifting Theorem (Our Setting)

Search Problem S = Search(f) $S \subseteq \{0, 1\}^n \times Q$ 

The Proof Lifting Theorem (Our Setting)

#### Search Problem S = Search(f) $S \subseteq \{0, 1\}^n \times Q$



#### Hard for Strong Complexity Measure 93

The Proof Lifting Theorem (Our Setting)

#### Search Problem S = Search(f) $S \subseteq \{0, 1\}^n \times Q$

?

Hard for Weak Complexity Measure



i∈[n] Hard for Strong Complexity Measure 94







# Lifting Theorem (ST-CONN)

#### **Theorem:** (Lifting Theorem for Rank Measure)

Consider layered ST-CONN on the  $2m^2 \times m$  grid, and let k be the **algebraic gap complexity** of the ST-CONN search problem. There is a real matrix A such that  $\mu_A(\text{ST-CONN}) \ge \frac{m^k}{6}$ 

# Lifting Theorem (ST-CONN)

#### **Theorem:** (Lifting Theorem for Rank Measure)

Consider layered ST-CONN on the  $2m^2 \times m$  grid, and let k be the **algebraic gap complexity** of the ST-CONN search problem. There is a real matrix A such that  $\mu_A(\text{ST-CONN}) \ge \frac{m^k}{6}$ 

**Proof:** Intuition on previous slide, extension of the Pattern Matrix Method [Sherstov '08].

#### Overview



Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

- 2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
- 3 Actually **prove** the query lower bounds against Search(f)

#### Overview



2

3

Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

- (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)  $\mu_A(f) \geq n^{\mathrm{gap}(f)}$
- Actually **prove** the query lower bounds against Search(f)

**Def:** Let  $F = C_1 \land C_2 \land \cdots \land C_m$  be an unsatisfiable CNF. Then Search(F) is the following problem: Given an assignment x to the variables of F, output the name of a clause falsified by x.

**Def:** Let  $F = C_1 \land C_2 \land \cdots \land C_m$  be an unsatisfiable CNF. Then Search(F) is the following problem: Given an assignment x to the variables of F, output the name of a clause falsified by x.

**Def:** Let  $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$  be a total search problem. The **algebraic gap complexity** of Search(F) is the maximum k for which there is a polynomial  $p : \{0,1\}^n \to \mathbb{R}$  such that  $\deg(p) = n, \quad \deg(p \upharpoonright_C) \leq n - k$ 

for each certificate C of Search(F).

**Def:** Let  $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$  be a total search problem. The **algebraic gap complexity** of Search(F) is the maximum k for which there is a polynomial  $p : \{0,1\}^n \to \mathbb{R}$  such that  $\deg(p) = n, \quad \deg(p \upharpoonright_C) \leq n - k$ 

for each certificate C of Search(F).

**Def**: Let  $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$  be a total search problem. The **algebraic gap complexity** of Search(F) is the maximum k for which there is a polynomial  $p : \{0,1\}^n \to \mathbf{R}$  such that  $\deg(p) = n, \quad \deg(p \upharpoonright_C) \leq n - k$ 

for each certificate C of Search(F).

We give lower bounds on the algebraic gap complexity for the search problems corresponding to GEN and ST-CONN by reducing to **reversible pebbling**.

#### Overview



2

3

Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

- (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)  $\mu_A(f) \geq n^{\mathrm{gap}(f)}$
- Actually **prove** the query lower bounds against Search(f)

#### Overview



2

Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

- (**Lift**) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)  $\mu_A(f) \geq n^{\mathrm{gap}(f)}$
- Actually prove the query lower bounds against<br/>Search(f) $gap(ST-CONN) = \log n$
Unified lower bounds against monotone models by "lifting".

Unified lower bounds against monotone models by "lifting".

Algebraic gaps  $\rightarrow$  other applications?

Unified lower bounds against monotone models by "lifting".

Algebraic gaps  $\rightarrow$  other applications?

Average case lower bounds?

Unified lower bounds against monotone models by "lifting".

Algebraic gaps  $\rightarrow$  other applications?

Average case lower bounds?

Sharpen lifting theorems further?

Unified lower bounds against monotone models by "lifting".

Algebraic gaps  $\rightarrow$  other applications?

Average case lower bounds?

Sharpen lifting theorems further?

Other algebraic query complexity measures for search problems?

Unified lower bounds against monotone models by "lifting".

Algebraic gaps  $\rightarrow$  other applications?

Average case lower bounds?

Sharpen lifting theorems further?

Other algebraic query complexity measures for search problems?

# Thanks for listening!

# References

Babai, Gal, Kollar, Ronyai, Szabo, Wigderson. *Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs.* STOC '96.

- Gal. A characterization of span program size and improved lower bounds for monotone span programs. STOC '98.
- Potechin. Bounds on monotone switching networks for directed connectivity. FOCS '10.
- Chan, Potechin. *Tight bounds for monotone switching networks via Fourier analysis.* STOC '12.
- Karchmer, Wigderson. *Monotone circuits for connectivity require superlogarithmic depth.* STOC '88.
- Karchmer, Wigderson. *On span programs.* Structure in Complexity Theory '93.
- Raz, Mckenzie. Separation of the monotone NC hierarchy. FOCS '97.
- Razborov. Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica '90.
- Sherstov. The pattern matrix method for lower bounds on quantum communication. STOC '08.