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(Less) Familiar Picture

Span Programs over field F [KW '90]
Capture logspace counting classes.

Comparator Circuits
             ~ Sorting networks.
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Fortunately, this is easy to fix.

Monotone = No Negations in Circuit Models
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[Babai et al '96] Quasipolynomial lower bounds
against mNP.

[Gal '98] Improved lower bounds using rank
measure (still quasipolynomial).

Extra Motivation:
Equivalent to Linear Secret Sharing Schemes (!) 
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Essentially nothing known!

Exponential bounds for Clique

Cannot even prove it contains mNL
or mL
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Can we separate mSPAN from mP? mNL?

Can we separate mCC from mP? mNL?

Natural Questions:

Yes --- also unify nearly all lower bounds in mP.



50

Rank Measure



51

Rank Measure



52

Rank Measure

monotone



53

Rank Measure

monotone



54

Rank Measure

monotone
Matrix

Not the
0-1 Communication

Matrix



55

Rank Measure

monotone
Matrix

Not the
0-1 Communication

Matrix

For any input index i,
take submatrix of



56

Rank Measure

monotone
Matrix

Not the
0-1 Communication

Matrix

For any input index i,
take submatrix of



57

Rank Measure

monotone

For any input index i,
take submatrix of



58

Rank Measure

monotone

Ranging over inputs...



59

Rank Measure

monotone

Ranging over inputs...



60

Rank Measure

monotone

All rectangles cover A!

Ranging over inputs...



61

Rank Measure

monotone

Rank Measure [Razborov '90]:
 

 

Ranging over inputs...

All rectangles cover A!



62

Rank Measure
Rank Measure [Razborov '90]:
 

 



63

Rank Measure
Rank Measure [Razborov '90]:
 

 
Theorem [R '90, KW '90, G '98, CPRR '16]: 

For any field F, any boolean function f,
and any matrix A over F,



64

Rank Measure
Rank Measure [Razborov '90]:
 

 
Theorem [R '90, KW '90, G '98, CPRR '16]: 

For any field F, any boolean function f,
and any matrix A over F,

in NP!

Best prior lower bounds:
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Main Theorem
Theorem: There is a function f (GEN) in mP and 
a real matrix A such that
 
There is a function g (STCONN) in mNL and a real 
matrix B such that

Prior Work:
Unified proof of many previous monotone separations
between classes within P.

Simplification of                    [Potechin '10]
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Span Programs:
First exponential lower bounds for monotone span 
programs and linear secret sharing schemes.

Main Theorem

First separations between monotone span programs
and monotone P, monotone NL

Example of a function computable by non-monotone
span programs over GF(2), not computable by
monotone span programs over reals

Theorem: There is a function f (GEN) in mP and 
a real matrix A such that
 
There is a function g (STCONN) in mNL and a real 
matrix B such that
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Comparator Circuits:
First exponential lower bounds for comparator
circuits computing a function in monotone P.

Main Theorem

First separations between monotone comparator
circuits and monotone P, monotone NL

Example of a function computable by non-monotone
comparator circuits, not efficiently computable by
monotone comparator circuits 

Theorem: There is a function f (GEN) in mP and 
a real matrix A such that
 
There is a function g (STCONN) in mNL and a real 
matrix B such that
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The Proof

Previous Proofs:

Direct combinatorial constructions

Resulting matrices have {0,1} entries, for which we
have quasipolynomial upper bounds [Razborov '90].

Our Proof:

Prove a new lifting theorem to reduce the lower bound
to bounding a new algebraic query measure on 
search problems.

Our matrices have entries in    , and so we can avoid
the above obstacle.
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The Proof
Overview

Rank Measure [Razborov '90]:
 

 1 Associate with certain special functions f (like GEN
and ST-CONN) a search problem Search(f)

2 (Lift) Reduce constructing a good matrix A 
for f to lower bounding a complexity measure on 
Search(f)

3 Actually prove the query lower bounds against
Search(f)

Follows from
[Raz-Mckenzie '97]
[Goos-Pitassi '15]
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Matrix
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The Proof
Lifting Theorem

(Our Setting)

Hard for
Weak Complexity

Measure

Hard for 
Strong Complexity

Measure

Search Problem
S = Search(f)

Polynomial

certifying a large
algebraic gap

for S

Compose p with
two-input function

g instead!
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Lifting Theorem (ST-CONN)

Theorem: (Lifting Theorem for Rank Measure)
 
Consider layered ST-CONN on the                grid, 
and let k be the algebraic gap complexity of the
ST-CONN search problem. There is a real matrix A
such that

Proof: Intuition on previous slide, extension of the
Pattern Matrix Method [Sherstov '08].
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The Proof
Lifting Theorem

Algebraic Gaps

Def: Let                                    be a total search 
problem. The algebraic gap complexity
of Search(F) is the maximum k for which there 
is a polynomial                          such that

for each certificate C of Search(F).

We give lower bounds on the algebraic gap complexity
for the search problems corresponding to GEN and
ST-CONN by reducing to reversible pebbling.  
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Conclusion

Unified lower bounds against monotone models 
by “lifting”.

Algebraic gaps → other applications?

Average case lower bounds?

Sharpen lifting theorems further?

Other algebraic query complexity measures for 
search problems?

Thanks for listening!
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