Exponential Lower Bounds for Monotone Span Programs

Stephen A. Cook

Toniann Pitassi
Robert Robere
FOCS 2016
Benjamin Rossman
University of Toronto

Familiar Picture

$N C^{1} \subseteq L \subseteq N L \subseteq N C \subseteq P$

Familiar Picture

$\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC} \subseteq \mathrm{P}$

Formulas

Familiar Picture

Switching Networks
(Branching Programs)
$\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC} \subseteq \mathrm{P}$

Formulas

Familiar Picture

Switching Networks
(Branching Programs)

Formulas Directed Switching Networks (Non-det. Branching Programs)

Familiar Picture

Formulas Directed Switching Networks (Non-det. Branching Programs)

Familiar Picture

Formulas Directed Switching Networks (Non-det. Branching Programs)

Familiar Picture

$N C^{1} \subseteq L \subseteq N L \subseteq N C \subseteq P$

(Less) Familiar Picture

CC
 UI
 $\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{~N} \subseteq \mathrm{NL} \subseteq \mathrm{NC} \subseteq \mathrm{P}$
 SPAN $_{F}$

(Less) Familiar Picture

Span Programs over field F [KW '90]

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

1	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

1	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0

Rows labelled with input literals.

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

Span Programs [KW '90]

What is a Span Program over a field \mathbf{F} ?

Accept assignment if the consistent rows span

(Less) Familiar Picture

Span Programs over field F [KW '90]
Capture logspace counting classes.

(Less) Familiar Picture

Comparator Circuits

Span Programs over field F [KW '90]
Capture logspace counting classes.

(Less) Familiar Picture

Span Programs over field F [KW '90]
Capture logspace counting classes.

(Less) Familiar Picture

CC
 UI
 $\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{~N} \subseteq \mathrm{NL} \subseteq \mathrm{NC} \subseteq \mathrm{P}$
 SPAN $_{F}$

Familiar Picture

CC
 UI
 $N C^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC} \subseteq \mathrm{P}$
 $\operatorname{SPAN}_{\mathrm{F}}$

Familiar Picture

How many separations do we have?

$$
\begin{gathered}
\mathrm{CC} \\
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC} \subseteq \mathrm{~N} \subseteq \mathrm{P} \\
\mathrm{SPAN}_{\mathrm{F}}
\end{gathered}
$$

Familiar Picture

How many separations do we have?

Familiar Picture

How many separations do we have?

Fortunately, this is easy to fix.

Familiar Picture

How many separations do we have?

$$
\begin{aligned}
& \text { mCC } \\
& \text { UI } \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \text { I } \cap \\
& \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Fortunately, this is easy to fix.
Monotone $=$ No Negations in Circuit Models

Familiar Picture

How many separations do we have?

$$
\begin{aligned}
& \text { mCC } \\
& \text { UI } \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \text { I } \cap \\
& \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Familiar Picture

[Potechin '10]
(Directed st-connectivity)

[Karchmer-Wigderson '88] (Undirected st-connectivity)
[Raz-Mckenzie '97] (GEN)
[Babai, Gal, Wigderson '99]

Familiar Picture

Familiar Picture

Familiar Picture

$\mathrm{mSPAN}_{\mathrm{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.

Familiar Picture

$\mathrm{mSPAN}_{\mathrm{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.
[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).

Familiar Picture

$\mathrm{mSPAN}_{\mathrm{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.
[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).
[BW '05] Quasipolynomial against nonmonotone NC

Familiar Picture

$\mathrm{mSPAN}_{\mathrm{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.
[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).
[BW '05] Quasipolynomial against nonmonotone NC
Extra Motivation:

Familiar Picture

$\mathrm{mSPAN}_{\mathrm{F}}$

[Babai et al '96] Quasipolynomial lower bounds against mNP.
[Gal '98] Improved lower bounds using rank measure (still quasipolynomial).
[BW '05] Quasipolynomial against nonmonotone NC
Extra Motivation:
Equivalent to Linear Secret Sharing Schemes (!) [KW '90]

Familiar Picture

Familiar Picture

$$
\begin{aligned}
& \mathrm{mCC}^{\mathrm{UI}} \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \mathrm{IN} \\
& \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Familiar Picture

Essentially nothing known! ECC Exponential bounds for Clique Cannot even prove it contains mNL or mL
 $\mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP}$ I \cap $\operatorname{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}$

Familiar Picture

$$
\begin{aligned}
& \text { mCC } \\
& \text { UI } \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \text { I } \cap \\
& \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Familiar Picture

$$
\begin{aligned}
& \mathrm{mCC} \\
& \stackrel{\mathrm{Ul}}{ } \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \\
& \quad{ }^{\mathrm{I}} \mathrm{~m} \\
& \\
& \quad \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Natural Questions:

Familiar Picture

$$
\begin{aligned}
& \text { mCC } \\
& \text { UI } \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \text { I } \cap \\
& \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Natural Questions:

Can we separate mSPAN from mP? mNL?

Familiar Picture

$$
\begin{aligned}
& \mathrm{mCC} \\
& \stackrel{\mathrm{Ul}}{ } \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \quad{ }^{\mathrm{I}} \mathrm{~m} \\
& \\
& \quad \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Natural Questions:

Can we separate mSPAN from mP? mNL?
Can we separate mCC from mP? mNL?

Familiar Picture

$$
\begin{aligned}
& \text { mCC } \\
& \text { UI } \\
& \mathrm{mNC}^{1} \subsetneq \mathrm{~mL} \subsetneq \mathrm{mNL} \subsetneq \mathrm{mNC} \subsetneq \mathrm{mP} \\
& \text { I } \cap \\
& \mathrm{mSPAN}_{\mathrm{F}} \nsubseteq \mathrm{mP}
\end{aligned}
$$

Natural Questions:

Can we separate mSPAN from mP? mNL?
Can we separate mCC from mP? mNL?
Yes --- also unify nearly all lower bounds in mP.

Rank Measure

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$
monotone

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

$$
f^{-1}(0)
$$

monotone

$$
f^{-1}(1)
$$

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$ monotone

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

monotone

For any input index i, take submatrix of

A
 Matrix
 Not the 0-1 Communication Matrix

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

monotone

For any input index i, take submatrix of

$$
\begin{gathered}
(x, y) \in f^{-1}(1) \times f^{-1}(0) \\
x_{i}=1 \\
y_{i}=0
\end{gathered}
$$

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

monotone

For any input index i, take submatrix of

$$
f^{-1}(1)
$$

$$
\begin{gathered}
(x, y) \in f^{-1}(1) \times f^{-1}(0) \\
x_{i}=1 \\
y_{i}=0
\end{gathered}
$$

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

monotone

Ranging over inputs...

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

monotone

Ranging over inputs...

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

monotone

Ranging over inputs...

All rectangles cover A!

Rank Measure

$f:\{0,1\}^{n} \rightarrow\{0,1\}$
monotone
Ranging over inputs...

All rectangles cover A!

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

Rank Measure

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

Rank Measure

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

Theorem [R '90, KW '90, G '98, CPRR '16]: For any field \mathbf{F}, any boolean function f , and any matrix A over \mathbf{F},

$$
\begin{gathered}
\mu_{A}(f) \leq \operatorname{mSPAN}_{\mathbf{F}}(f) \leq \mathrm{mL}(f) \leq \mathrm{mNC}^{1}(f) \\
\mu_{A}(f) \leq \mathrm{mCC}(f)
\end{gathered}
$$

Rank Measure

Rank Measure [Razborov '90]:

 $\operatorname{rank}(A)$
Best prior lower bounds:

$$
\begin{gathered}
\mu_{A}(f) \geq n^{\Omega(\log n)} \\
f \text { in NP! }
\end{gathered}
$$

$$
\mu_{A}(f) \leq \mathrm{mCC}(f)
$$

Main Theorem

Theorem: There is a function $f(G E N)$ in $\mathbf{m P}$ and a real matrix A such that $\mu_{A}(f) \geq 2^{\Omega\left(N^{\varepsilon}\right)}$

There is a function g (STCONN) in $\mathbf{m N L}$ and a real matrix B such that $\mu_{B}(g) \geq N^{\Omega(\log N)}$

Main Theorem

Theorem: There is a function $f(G E N)$ in $\mathbf{m P}$ and a real matrix A such that $\mu_{A}(f) \geq 2^{\Omega\left(N^{\varepsilon}\right)}$

There is a function g (STCONN) in $\mathbf{m N L}$ and a real matrix B such that $\mu_{B}(g) \geq N^{\Omega(\log N)}$

Prior Work:

Unified proof of many previous monotone separations between classes within P.

Simplification of $\mathrm{mL} \nsubseteq \mathrm{mNL}$ [Potechin '10]

Main Theorem

Theorem: There is a function $f(G E N)$ in $\mathbf{m P}$ and a real matrix A such that $\mu_{A}(f) \geq 2^{\Omega\left(N^{\varepsilon}\right)}$

There is a function g (STCONN) in $\mathbf{m N L}$ and a real matrix B such that $\mu_{B}(g) \geq N^{\Omega(\log N)}$

Span Programs:

First exponential lower bounds for monotone span programs and linear secret sharing schemes.

First separations between monotone span programs and monotone P, monotone NL

Example of a function computable by non-monotone span programs over GF(2), not computable by monotone span programs over reals

Main Theorem

Theorem: There is a function $f(G E N)$ in $\mathbf{m P}$ and a real matrix A such that $\mu_{A}(f) \geq 2^{\Omega\left(N^{\varepsilon}\right)}$

There is a function g (STCONN) in $\mathbf{m N L}$ and a real matrix B such that $\mu_{B}(g) \geq N^{\Omega(\log N)}$

Comparator Circuits:

First exponential lower bounds for comparator circuits computing a function in monotone P.

First separations between monotone comparator circuits and monotone P, monotone NL

Example of a function computable by non-monotone comparator circuits, not efficiently computable by ${ }_{68}$ monotone comparator circuits

The Proof

The Proof

Previous Proofs:

The Proof

Previous Proofs:

Direct combinatorial constructions

The Proof

Previous Proofs:

Direct combinatorial constructions
Resulting matrices have $\{0,1\}$ entries, for which we have quasipolynomial upper bounds [Razborov '90].

The Proof

Previous Proofs:

Direct combinatorial constructions
Resulting matrices have $\{0,1\}$ entries, for which we have quasipolynomial upper bounds [Razborov '90].

Our Proof:

The Proof

Previous Proofs:

Direct combinatorial constructions
Resulting matrices have $\{0,1\}$ entries, for which we have quasipolynomial upper bounds [Razborov '90].

Our Proof:

Prove a new lifting theorem to reduce the lower bound to bounding a new algebraic query measure on search problems.

The Proof

Previous Proofs:

Direct combinatorial constructions
Resulting matrices have $\{0,1\}$ entries, for which we have quasipolynomial upper bounds [Razborov '90].

Our Proof:

Prove a new lifting theorem to reduce the lower bound to bounding a new algebraic query measure on search problems.

Our matrices have entries in \mathbf{R}, and so we can avoid the above obstacle.

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

1 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

1 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

1 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
3 Actually prove the query lower bounds against Search(f)

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

7 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
3 Actually prove the query lower bounds against Search(f)

The Proof

Overview

Rank Moدcirn [Dدァhnrnı'ON]:

$$
\begin{array}{cl}
\begin{array}{c}
\text { Follows from } \\
\text { [Raz-Mckenzie '97] } \\
\text { [Goos-Pitassi '15] }
\end{array} & \frac{k(A)}{k\left(A \upharpoonright R_{i}\right)}
\end{array}
$$

7 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
3 Actually prove the query lower bounds against Search(f)

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

7 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
3 Actually prove the query lower bounds against Search(f)

The Proof
 Lifting Theorem

The Proof
 Lifting Theorem
 (Communication Setting)

The Proof

Lifting Theorem
(Communication Setting)
Search Problem
$\mathrm{S}=$ Search (f)
$S \subseteq\{0,1\}^{n} \times Q$

The Proof
 Lifting Theorem
 (Communication Setting)

Search Problem
$\mathrm{S}=$ Search(f)
$S \subseteq\{0,1\}^{n} \times Q$

Hard for
Weak Complexity
Measure

The Proof
 Lifting Theorem
 (Communication Setting)

Search Problem

$\mathrm{S}=$ Search(f)
$S \subseteq\{0,1\}^{n} \times Q$

$$
x \in \mathcal{A}^{n}, y \in \mathcal{B}^{n}
$$

Hard for
Weak Complexity
Measure

The Proof
 Lifting Theorem
 (Communication Setting)

Search Problem
S = Search(f)
$S \subseteq\{0,1\}^{n} \times Q$

$$
\begin{gathered}
x \in \mathcal{A}^{n}, y \in \mathcal{B}^{n} \\
S\left(g\left(x_{1}, y_{1}\right), \ldots g\left(x_{n}, y_{n}\right)\right)
\end{gathered}
$$

Compose S with some two input function g

Alice gets x inputs
Hard for Bob gets y inputs
Weak Complexity
Measure

The Proof

Lifting Theorem
 (Communication Setting)

Search Problem
$\mathrm{S}=\operatorname{Search}(\mathrm{f})$
$S \subseteq\{0,1\}^{n} \times Q$

Alice gets x inputs
Hard for Bob gets y inputs
Weak Complexity
Measure

Hard for

Strong Complexity Measure

The Proof
 Lifting Theorem
 (Our Setting)

The Proof Lifting Theorem (Our Setting)

Search Problem
 $\mathrm{S}=$ Search (f)
 $S \subseteq\{0,1\}^{n} \times Q$

The Proof
 Lifting Theorem
 (Our Setting)

Search Problem $\mathrm{S}=\operatorname{Search}(\mathrm{f})$
$S \subseteq\{0,1\}^{n} \times Q$

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

Hard for
Strong Complexity Measure

The Proof
 Lifting Theorem
 (Our Setting)

Search Problem
$\mathrm{S}=$ Search(f)
$S \subseteq\{0,1\}^{n} \times Q$

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

Hard for
Strong Complexity Measure

The Proof
 Lifting Theorem
 (Our Setting)

Search Problem $\mathrm{S}=$ Search(f)
$S \subseteq\{0,1\}^{n} \times Q$

Hard for
Weak Complexity Measure

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

Hard for
Strong Complexity Measure

The Proof
 Lifting Theorem
 (Our Setting)

Search Problem
$\mathrm{S}=$ Search (f)
$S \subseteq\{0,1\}^{n} \times Q$
Polynomial
$p:\{0,1\}^{n} \rightarrow \mathbf{R}$
certifying a large algebraic gap for S

Hard for
Weak Complexity Measure

Hard for Strong Complexity Measure

The Proof

Lifting Theorem

(Our Setting)
Search Problem
$f^{-1}(0)$
$S \subseteq\{0,1\}^{n} \times Q$

$$
p:\{0,1\}^{n} \rightarrow \mathbf{R}
$$

certifying a large algebraic gap for S

$$
p\left(g\left(x_{1}, y_{1}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)
$$

Compose p with
$\mathrm{S}=$ Search (f)

Polynomial

Hard for
Weak Complexity Measure two-input function $\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}$

Hard for
Strong Complexity
Measure

Lifting Theorem (ST-CONN)

Theorem: (Lifting Theorem for Rank Measure)

Consider layered ST-CONN on the $2 m^{2} \times m$ grid, and let k be the algebraic gap complexity of the ST-CONN search problem. There is a real matrix A such that

$$
\mu_{A}(\text { ST-CONN }) \geq \frac{m^{k}}{6}
$$

Lifting Theorem (ST-CONN)

Theorem: (Lifting Theorem for Rank Measure)

Consider layered ST-CONN on the $2 m^{2} \times m$ grid, and let k be the algebraic gap complexity of the ST-CONN search problem. There is a real matrix A such that

$$
\mu_{A}(\mathrm{ST}-\mathrm{CONN}) \geq \frac{m^{k}}{6}
$$

Proof: Intuition on previous slide, extension of the Pattern Matrix Method [Sherstov '08].

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

7 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
2 (Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)
3 Actually prove the query lower bounds against Search(f)

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

7 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
7
(Lift) Reduce constructing a good matrix A
for f to lower bounding a complexity measure on Search(f)

$$
\mu_{A}(f) \geq n^{\operatorname{gap}(f)}
$$

3 Actually prove the query lower bounds against Search(f)

The Proof
 Lifting Theorem Algebraic Gaps

The Proof Lifting Theorem Algebraic Gaps

Def: Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be an unsatisfiable CNF. Then Search(F) is the following problem: Given an assignment x to the variables of F, output the name of a clause falsified by x.

The Proof Lifting Theorem Algebraic Gaps

Def: Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be an unsatisfiable CNF. Then Search(F) is the following problem: Given an assignment x to the variables of F, output the name of a clause falsified by x.

Def: Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be a total search problem. The algebraic gap complexity of $\operatorname{Search}(F)$ is the maximum k for which there is a polynomial $p:\{0,1\}^{n} \rightarrow \mathbf{R}$ such that

$$
\operatorname{deg}(p)=n, \quad \operatorname{deg}\left(p \upharpoonright_{C}\right) \leq n-k
$$

for each certificate C of Search(F).

The Proof Lifting Theorem Algebraic Gaps

Def: Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be a total search problem. The algebraic gap complexity of Search (F) is the maximum k for which there is a polynomial $p:\{0,1\}^{n} \rightarrow \mathbf{R}$ such that

$$
\operatorname{deg}(p)=n, \quad \operatorname{deg}\left(p \upharpoonright_{C}\right) \leq n-k
$$

for each certificate C of $\operatorname{Search}(F)$.

The Proof Lifting Theorem Algebraic Gaps

Def: Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be a total search problem. The algebraic gap complexity of Search (F) is the maximum k for which there is a polynomial $p:\{0,1\}^{n} \rightarrow \mathbf{R}$ such that

$$
\operatorname{deg}(p)=n, \quad \operatorname{deg}\left(p \upharpoonright_{C}\right) \leq n-k
$$

for each certificate C of $\operatorname{Search}(F)$.

We give lower bounds on the algebraic gap complexity for the search problems corresponding to GEN and ST-CONN by reducing to reversible pebbling.

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

7 Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
7
(Lift) Reduce constructing a good matrix A
for f to lower bounding a complexity measure on Search(f)

$$
\mu_{A}(f) \geq n^{\operatorname{gap}(f)}
$$

3 Actually prove the query lower bounds against Search(f)

The Proof

Overview

Rank Measure [Razborov '90]:

$$
\mu_{A}(f)=\frac{\operatorname{rank}(A)}{\max _{i \in[n]} \operatorname{rank}\left(A \upharpoonright R_{i}\right)}
$$

Associate with certain special functions f (like GEN and ST-CONN) a search problem Search(f)
(Lift) Reduce constructing a good matrix A for f to lower bounding a complexity measure on Search(f)

$$
\mu_{A}(f) \geq n^{\operatorname{gap}(f)}
$$

Actually prove the query lower bounds against Search(f)

$$
\operatorname{gap}(\text { ST-CONN })=\log n
$$

Conclusion

Conclusion

Unified lower bounds against monotone models by "lifting".

Conclusion

Unified lower bounds against monotone models by "lifting".

Algebraic gaps \rightarrow other applications?

Conclusion

Unified lower bounds against monotone models by "lifting".

Algebraic gaps \rightarrow other applications?
Average case lower bounds?

Conclusion

Unified lower bounds against monotone models by "lifting".

Algebraic gaps \rightarrow other applications?
Average case lower bounds?
Sharpen lifting theorems further?

Conclusion

Unified lower bounds against monotone models by "lifting".

Algebraic gaps \rightarrow other applications?
Average case lower bounds?
Sharpen lifting theorems further?
Other algebraic query complexity measures for search problems?

Conclusion

Unified lower bounds against monotone models by "lifting".

Algebraic gaps \rightarrow other applications?
Average case lower bounds?
Sharpen lifting theorems further?
Other algebraic query complexity measures for search problems?

Thanks for listening!

References

Babai, Gal, Kollar, Ronyai, Szabo, Wigderson. Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs. STOC '96.
Gal. A characterization of span program size and improved lower bounds for monotone span programs. STOC '98.
Potechin. Bounds on monotone switching networks for directed connectivity. FOCS '10.
Chan, Potechin. Tight bounds for monotone switching networks via Fourier analysis. STOC '12.
Karchmer, Wigderson. Monotone circuits for connectivity require superlogarithmic depth. STOC '88.
Karchmer, Wigderson. On span programs. Structure in Complexity Theory '93.
Raz, Mckenzie. Separation of the monotone NC hierarchy. FOCS '97.
Razborov. Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica '90.
Sherstov. The pattern matrix method for lower bounds on quantum communication. STOC '08.

