
Search-Based Model Optimization using Model
Transformations

Joachim Denil, Māris
Jukšs

MSDL-Lab, School of
Computer Science

McGill University, Canada
{denil,mjukss}@cs.mcgill.ca

Clark Verbrugge
Sable, School of Computer

Science
McGill University, Canada
clump@cs.mcgill.ca

Hans Vangheluwe
Ansymo and MSDL

University of Antwerp, Belgium
McGill University, Canada

hv@cs.mcgill.ca

ABSTRACT
With the advent of new and more complex software engi-
neering problems and applications, synergies between Search-
Based Software Engineering (SBSE) and Model-Driven En-
gineering (MDE) have been proposed. SBSE formulates the
software engineering problem as a search-based optimization
(SBO) problem. In Model-Driven Engineering, model trans-
formation is the preferred technique to manipulate models.
The challenge thus lies in adapting model transformations to
tackle SBO tasks. In this paper we explore the inclusion of
search directly in model transformations, without the need
for an intermediate representation. We also investigate the
feasibility and scalability of the approach on an industrial-
scale problem of resource allocation. We demonstrate that
our solution is feasible and applicable to problems where rep-
resenting the problem in a search amenable representation
is time consuming, hard or even impossible.

Keywords
SBSE, MDE, Model Transformation, CMSBSE, Search Meth-
ods

1. INTRODUCTION
Model-Driven Engineering (MDE) [1] uses abstraction to

bridge the cognitive gap between the problem space and the
solution space in complex software and system engineering
problems. To bridge this gap, MDE uses models to describe
complex systems at multiple levels of abstraction. A model
is said to conform to a meta-model [2]. A meta-model de-
fines a possible, infinite set of syntactically conforming in-
stance models by defining a set of constructs, relations and
a set of constraints. The MDE approach supports system-
atic transformations of problem-level abstractions into their
implementations. Model transformation is even regarded as
the “heart and soul of model-driven software and system de-
velopment [3]”.

One technique for solving complex software engineering
problems is Search-Based Software Engineering (SBSE). SBSE
is a discipline where computational search techniques are
used to solve complex problems in the software engineering
field. SBSE formulates the software engineering problem as
a search-based optimization (SBO) problem. A wide range
of optimization techniques are used to search the solution
space for a local or global optimum to the problem. SBSE
has been applied to a multitude of software engineering pro-
cesses and products such as test case generation, require-

ments engineering, resource allocation, etc. [4]. Applying
Search-Based Software Engineering (SBSE) to a software
engineering problem requires four components: (a) a repre-
sentation of the problem, (b) a method to create a candidate
solution to the problem (c) a goal-function metric to evalu-
ate if a candidate solution is “good”, and (d) an optimization
method. The theory of SBSE currently offers little guidance
as to the choice of representation, fitness metric, and search
method, therefore such choices are often made empirically
on a problem-by-problem basis [5].

With the advent of new and more complex problems and
applications, synergies between the SBSE and MDE are con-
sidered [6]. Burton and Poulding [5] propose models as a
suitable problem and solution representation. Models in-
deed enable the representation of the problem in a highly
structured and consistent way. This eliminates the need of
finding a suitable problem-specific representation amenable
for search. Model-Driven Engineering also has a tool-set
available for manipulating these models in a structured way
by the use of model transformation. Finally, MDE also al-
lows to visualize the obtained solutions without an addi-
tional translation cost from the problem-specific search rep-
resentation to a representation in the problem domain.

Although model transformation is proposed as the tool
for the manipulation of models, little work has been done in
integrating search in model transformation models. In this
paper we show how to integrate a set of well-known single-
state search techniques in model transformation models. We
identify the different components needed in a transformation
language to allow this. Furthermore, we will look at the
performance of the different search techniques using model
transformation as the technique to generate candidate solu-
tions to the problem.

Because a multitude of model transformation techniques
exist in the literature, we focus on the use of rule-based
model transformations where models are represented as typed,
attributed directed graphs.

The rest of this paper is organized as follows: In the
following Section, we look at other motivations to include
search techniques in model transformation models. Section 3
introduces the running example used to show the contribu-
tions in this paper. Section 4 introduces the components of
a rule-based model transformation language. In Section 5
model transformation models with search are created. Our
experimental evaluation of the approach is studied in Sec-
tion 6. In Section 7 we discuss the approach and look at
other advantages of having a MDE approach to search prob-



lems as well as the disadvantages. Section 8 discusses related
work with respect to the use of model transformation for
search. Finally, in Section 9 we conclude and look at future
work.

2. MOTIVATION
Including Search-Based Optimization techniques in model

transformation models has some other advantages over cre-
ating a search-amenable representation of the same problem.

Transformations used to create candidate solutions for the
search method make domain knowledge explicit. Indeed,
they show where the variation points in the model are and
how we can create candidate solutions to the problem. In
the proposed approach, the model remains at the centre
of the problem. Complex problems for searching are de-
scribed in the natural language of the engineers since both
the model and the transformation rules share a common vi-
sual representation. This removes the difficult need to create
a problem-specific search representation of the problem. No
transformations need to be created to transform the model
to this search representation and vice versa.

There is however another advantage to the use of model
transformation rules to explicitly model the variation points.
Domain knowledge already known by the domain experts
can be easily integrated in the search problem by either
adding another rule or augmenting the existing rules with
extra constraints.

Other domain knowledge can be discovered by mining the
traces of the transformations. The mining of the trances can
uncover the sensitivity of parameters, where the changes of
certain parameters have more effect than the effects of other
parameters. These are the choices that should be focussed
on during search. The mining of the traces can also be
used to uncover new domain knowledge when certain choices
always lead to good or bad solutions.

Finally, using a transformation-based approach to search
problems allows for the full integration of the optimization
in the MDE-cycle. The FTG+PM proposed in [7] allows
for the creation of complex model transformation chains
with non-linear control- and data-flow. The optimization
can be completely shown as an FTG+PM, as shown in [8].
The FTG+PM as well allows for the creation of optimiza-
tion chains, where the search problem is divided into differ-
ent parts to create complex, hybrid optimization chains [9].
Manual optimization steps are also possible in this approach,
where a selection of steps can be done using human interac-
tion. The overall approach allows for the full integration of
search in the MDE cycle resulting in documented, reusable
optimization models.

3. RUNNING EXAMPLE
The contribution of this paper is demonstrated using a

running example. The example is a resource allocation prob-
lem in the automotive domain based on [10]. In the example,
a set of communicating software functions needs to be as-
signed to a set of electronic control units (ECUs) connected
by a communication bus. Afterwards, these functions need
to be packed into tasks with an assigned priority and a set
of messages (with a priority) on the bus. The goal is to
minimize the end-to-end latency of the application.

Zheng et al. approach the problem by searching for a map-
ping where the total loads of the different ECUs are below a

threshold of 69% (the schedulability test for rate-monotonic
systems [11]). The goal-function or fitness-function for find-
ing an optimal solution is to minimize communication be-
tween the different ECUs since the communication on the
bus introduces delays that impact the timing behaviour of
the final solution. Afterwards, a similar search problem is
defined for finding an optimal mapping of software functions
to tasks with a priority and messages on the bus. For rea-
sons of clarity we only focus on the first part of the example,
the mapping of software functions to ECUs. Feasible solu-
tions for this problem have all software functions mapped to
an ECU, while the total load on the ECU is smaller than
69%. The fitness-function minimizes the communication on
the bus. The number of (feasible and non-feasible) solutions
to this problem is defined by ES , where E is the number of
ECUs and S the number of functions.

The meta-model used in the motivating example is shown
in Figure 1. It contains a SWC (software function) with a
period (in ms) and a worst-case execution time (WCET ; in
ms) attribute. An SWC can be mapped to a single ECU .
When a SWC is mapped to an ECU the Load attribute of
the ECU is increased by (WCET/Period) of the mapped
software function. A similar calculation is used for the Load
on the Bus, based on the Size of the communication mes-
sage (Comm) and the Period of the sending software func-
tion. The Load of the Bus only increases when the sending
and receiving SWC are mapped to a different ECU .

Figure 2 shows an example of a model in this meta-model.
An industrial size model of this mapping problem consists
of 40 software functions, communicating over 80 messages
between them. These functions can be mapped to eight
ECUs connected to a single bus. The design space of the
industrial size model consists of 840 different solutions.

We chose this example for different reasons. The problem
is a resource allocation problem that is well known across
different software engineering fields [12, 13, 14]. Because
the problem is well studied, a more optimal search represen-
tation exists for this problem in the literature based on lists.
This allows us to compare our optimization results as well
as the performance with a known implementation. Finally,
the search space is very large, so a lot of different choices
can be made by the optimization algorithms.

4. TRANSFORMATION LANGUAGES AND
T-CORE

The developed search augmented transformation models
are based on the T-core transformation framework. T-Core
is a minimal collection of model transformation primitives,
defined at the optimal level of granularity, presented in [15].
T-Core is not restricted to any form of specification of trans-
formation units, be it rule-based, constraint-based, or function-
based. It can also represent bidirectional and functional
transformations as well as queries. T-Core modularly encap-
sulates the combination of these primitives through compo-
sition, re-use, and a common interface. It is an executable
module that is easily integrable with a programming or mod-
elling language. Figure 3 shows some of the components of
a transformation language. We briefly discuss the compo-
nents we use in creating the different search transformations.
More information can be found in [15].

Rule-based model transformation languages work on typed,
attributed and directed graphs that represent the model.



Name: String
Period: Int
WCET: Float

SWC Size: Int
Comm

*

*

Name: String
Load: Float

ECU
Load: Float

Bus
1

M
apping

ToCom

FromCom

1

busCon

Figure 1: Metamodel used in the motivating exam-
ple

SWC

function
1

SWC

function
2

CAN-Bus

ECU

ECU1

ECU

ECU1

8

Figure 2: Example model showing the visual repre-
sentation used in the motivating example

Figure 3: Composition of a Transformation Lan-
guage

A transformation rule represents a manipulation operations
on the represented model. A rule consists of a left-hand
side (LHS) pattern representing the pre-condition for the
applicability of the rule. The right-hand side (RHS) pattern
defines the outcome of the operation. A set of negative ap-
plication condition (NAC) patterns can be defined to block
the application of the rule. Pattern elements in the LHS,
RHS and NAC are uniquely labeled as in figure 5 to refer
to matched instances. The transformation rule outcome is
decided based on these unique labels.

• Matcher: The matcher binds model elements that sat-
isfy the pre-condition pattern. The different “matches”
are stored in a set. The matcher can be parametrised
to find a certain number of matches or all of the avail-
able matches in the model. Using graph-based models,
the matching problem leads to the subgraph isomor-
phism problem that is known to be NP-complete [16].
Different algorithms can be used to find the bindings:

– VF2: VF2 solves the problem as a constraint-
satisfaction problem. The algorithm constructs a
search tree traversing the host graph depth-first
and backtracks when the current search-state fails
a compatibility test [17]. The default matcher
in T-Core uses an augmented version of the VF2
algorithm [15].

– Search Plans: Search Plans solve the problem by
performing a local search. The algorithm focuses
on ordering elementary operations by using tool-
specific heuristics to guide the pattern matching
process. The order of the operations are defined
in advance. Examples of elementary operations
are checking the existence of an edge and de-
cisions of navigating the pre-condition pattern.
The heuristics used in our T-Core search plan are
based on [18].

– Rete: Rete is an incremental pattern matching al-
gorithm first developed for production systems [19].
It uses memoisation to store partial matches in a
network. The network consists out of join nodes
to join a partial match with a connected edge or
node of the model. Other constructs can filter dif-
ferent matches based on a constraint. The Rete
network used in this paper is constructed manu-
ally and is based on techniques shown in [20].

• Iterator: The iterator gives explicit control to select a
match from the matchtset to rewrite in the model. The
iterator can be setup to always select the first match
in the set or to randomly select a match in the set.

• Rewriter: The rewriter rewrites the model using the
RHS pattern.

• Rollbacker: The rollbacker enables backtracking in the
transformation language. The backtracking mecha-
nism for the VF2-like matcher and search plans matcher
is based on copying the graph structure and the match-
sets (including a selected match). For the Rete matcher
a transaction based system is used where the opera-
tions are stored and rolled back.



The scheduling language is used to compose different rules
and transformation primitives after each other. To execute a
single transformation rule, a matcher first creates the match-
set containing the matches that comply to the LHS pattern
of the rule. One of these matches is chosen by the itera-
tor. The rewriter adapts the model based on the chosen
match and the RHS pattern. Different kind of scheduling
languages can be used, like activity diagrams, DEVS or a
common sequence, branch, loop language [15].

An in-depth study of the different features of a model
transformation languages can be found in [21].

5. INCLUDING SEARCH IN TRANSFOR-
MATION MODELS

To include search in model transformation models, the
different components of a search-based optimization tech-
niques need to be present in the model transformation. The
components of a search-technique consist of:

• Problem representation: The representation is the graph-
based model without any augmentations for search.

• Creation of candidate solution: Model transformation
rules are used for creating a (or a set of) candidate
solutions.

• Optimization technique: The optimization technique
is implemented using the scheduling language of the
model transformation language.

• A metric to evaluate if a solution is “feasible” and
“good”: Metrics can be calculated using (a) a model
transformation, when the metric is based on structural
properties of the model or, (b) transforming the model
to another representation (e.g. a simulation model, al-
gebraic equation, etc.) if the metric is based on the
behaviour of the model. In the running example, the
metrics are calculated using a model transformation
since the metric is based on structural properties of
the model.

We explicitly make the distinction between a “feasible”
and a “good” candidate solution. A feasible candidate solu-
tion is a model that is within all the constraints of the search
problem. In our running example this means that the load
of each processor is below 69% and all software components
have been mapped. A “good” solution or “better” solution
is a comparison of two feasible solutions with respect to the
goal-function. In the running example this means that the
bus load of the one model is less than that of another model.
Depending on the problem, the model transformation rules
can make only feasible solutions or, because of the complex-
ity of the problem, feasible and non-feasible solutions . In
the latter case, these non-feasible candidate solutions should
be pruned on evaluation.

In the following subsections we show that it is feasible
to include different search techniques in model transforma-
tion models. Four well known search techniques that are
used in optimization are constructed. The first two: ex-
haustive and randomized search create a number of solution
points in the search space. The latter two: Hill Climbing
and Simulated Annealing start optimizing a single solution.
We define for each of the proposed search techniques what
the requirements of the model transformation language are.

Exhaustive

Match

Iterate

Rewrite

Exhaustive
Next Rule

Checkpoint

nextRule?

true
Restore

Next Match

Save Solution 
Point

success?

success?

false
true

false

Random

Match

Iterate

Rewrite

Hill Climbing

Match

Iterate

Rewrite

Checkpoint

Evaluate

better?

Restore

Next Match

success?

false

no

true

Random
Next Rule

Save Solution 
Pointstop?

false

true

nextRule?

true false

Simulated Annealing

Match

Iterate

Rewrite

Checkpoint

Evaluateaccept?

Restore

false

temp?

iterate?

Decrease temp

true

false

true

Store Best; 
Clear Checkp.

false
true

Figure 4: Activity diagram of Exhaustive Search,
Random Optimization, Hill climbing and Simulated
Annealing using T-Core primitives.

Transformation rules are created for the running example to
create the candidate solutions.

5.1 Exhaustive Search
While the exhaustive search is infeasible for most prob-

lems, because a potentially huge search space needs to be
explored, it can be used for the optimization of small prob-
lems. Exhaustive search will generate all solutions of the
design space. Figure 4 shows an activity diagram of the
implementation of the exhaustive search method.

The transformation starts by matching all the occurrences
in the start model. The iterator chooses the first match in
the matchset, followed by a creation of a checkpoint. This
checkpoint contains (a) the model, (b)the selected match
and (c) the matchset, without the chosen match. The se-
lected match is rewritten in the model. When more rules are
available or the same rule has to be executed multiple times,
the sequence (match, select match, checkpoint and rewrite)
is repeated. Once a single solution is created, the backtrack-
ing can start. Since the backtracker can contain multiple
checkpoints (from multiple rule applications), the last one
is selected. This restores (a) the model, (b) the match that



NAC LHS RHS

SWC
1

ECU
3

2

SWC
1

SWC
1

LHS RHS

SWC
1

SWC
1

ECU
2

3

ECU
2

Figure 5: Amalgamated rule for the creation of map-
pings in the exhaustive and random search transfor-
mation model

was selected at the time instant the checkpoint was made
and (c) the rest of the matchset. The iterator is used to
replace the previously chosen match with another one from
the matchset, again this is check-pointed and rewritten. The
process continues as described above until all matches in the
matchsets of all checkpoints have been applied. It results in
a DFS-like traversal of the design space.

The transformation rule for the exhaustive search for the
motivating example uses an amalgamated rule [22], shown
in Figure 5, to prevent the creation of duplicate results. The
first rule, selects a single unmapped software function and
marks it for the nested rule. The nested rule maps the soft-
ware function to an ECU. The rule prevents the creation of
infeasible solutions, by only selecting an ECU with enough
temporal slack.

5.2 Randomized Search
In randomized search a set of solutions are created in a

random way. The technique is used to get an overview of
the search-space. It can also be used to create a starting
point for other search techniques that require a candidate
solution to start optimizing.

Random search uses only the matcher, iterator and rewriter.
After matching all occurrences of the pattern in the model,
a random match is selected for rewrite. This requires a dif-
ferent iterator than in exhaustive case. The rewriter applies
the randomly chosen match on the model. Afterwards, an-
other rule or the same rule can be executed until a solution
point is obtained. A loop is used to create multiple solution
points.

The same transformation rule of Figure 5 is used for cre-
ating a set of random solutions in the motivating example.

5.3 Hill Climbing
Hill climbing is a local search technique that uses an incre-

mental method to optimize a single solution. The algorithm
starts with an arbitrary solution to the problem and itera-
tively optimizes this solution by changing a single element.
If the change is a better solution to the optimization prob-
lem, the change is accepted. This procedure is repeated until
no better result is found.

Figure 4 shows the building blocks of the hill climbing
transformation. After matching all occurrences in a (set of)
rule(s), the iterator picks one match at random and rewrites
this in the model. The solution is evaluated and compared

LHS RHS

LHS RHS

SWC
1

ECU
3

2

SWC
4

ECU
6

5

SWC
1

ECU
3

2

ECU
4

SWC
1

ECU
3

5

ECU
4

SWC
1

ECU
3

7

SWC
4

ECU
6

8

Figure 6: Rules for creating a neighbouring solution
in hill climbing and simulated annealing

with the original solution. In case the solution is not bet-
ter, the original solution (with the matches) is restored and
another match is randomly selected and evaluated. If the
solution is a better one, it is accepted.

The evaluator contains a set of transformation rules to
calculate the metrics of the solution or to generate an anal-
ysis or simulation model that can be executed. The metrics
obtained are used by the scheduling language to decide if the
solution is more optimal than the previous solution. When
a better solution has been found, the process is restarted
until no more improvements can be found.

Figure 3 shows the rules involved in the hill climbing pro-
cess for optimizing the motivating example. The first rule
moves a software function to another ECU. The second rule
switches the mapping of two software components. Both
rules only create feasible solutions by checking the temporal
slack on the ECUs.

5.4 Simulated Annealing
Simulated annealing is a generic probabilistic optimisation

algorithm [23]. The algorithm is inspired from metallurgy
where controlled cooling is used to reduce defects in the
crystal structure of the metal. The controlled cooling is
used in simulated annealing to decrease the probability in
accepting not only a more optimal solutions but also a less
optimal solution. By not only accepting better solutions,
the search algorithm is able to escape a local optimal result.

Again all occurrences are matched where only a single
one is picked for rewriting. Based on the difference between
the previous solution and the candidate solution, and the
temperature, the candidate solution is accepted or rejected
(resulting in a backtracking step). At low temperatures only
better and equal solutions are accepted. Backtracking is
thus more intensive at lower temperatures. This process
is iterated for a pre-defined number of times. Afterwards,
the temperature is decreased and the optimization algorithm
resumes with a new temperature. The best overall solution
is stored during the optimization cycle.

The transformation rules involved in generating a candi-
date solution in the running example are equal to the ones
used in the hill-climbing algorithm.

6. EXPERIMENTAL EVALUATION
The experimental section is divided into five parts. In



the first part, we explain our experimental setup. The sec-
ond part looks at the actual results obtained from optimiz-
ing the running example. We compare the three match-
ing techniques together with a coded implementation of the
same problem. The third part compares the computational
expense of the three matching techniques. In the fourth
part we compare the computational expense of a rule-based
model transformation technique with that of a coded imple-
mentation. Finally, we define the treats to the validity of
the experiments.

6.1 Experimental Setup
We compare for each of the proposed search techniques

(with the exception of exhaustive search) the results of the
optimization and the run-time performance. Different mod-
els are used in the study. We create a start point for each
of the techniques by varying the number of ECUs and soft-
ware functions in the industrial model by a step size of six
software functions. The number of ECUs is automatically
increased based on the total load of all ECUs if the functions
would have been mapped. The total amount of used models
in the experiments is six, starting from 10 software functions
mappable to 3 ECUs to 40 software functions mappable to
8 ECUs (the industrial size model).

Because a random starting point is used for both hill
climbing and simulated annealing and due to the high ran-
domness of all algorithms, the results of the optimizations
are not equal. Therefore multiple execution runs are done
per starting model. For the randomized search, 100 solu-
tions are created. For hill climbing we limit the study to
nine execution runs, and because of the run-time cost of
creating a single simulated annealing result, only three runs
are executed.

The parameters of the simulated annealing are slightly
adapted from the parameters used in [24]. The starting
temperature is 100 with a temperature decrease of 0.89%,
resulting in 40 temperature drops. A temperature decrease
is done after the algorithm has explored 45 times the num-
ber of software functions in the model. The algorithm stops
after finding the optimal solution (no communication) or a
temperature below one. For the industrial size model, sim-
ulated annealing explores 72000 individual solutions to the
problem.

The transformation models and schedules have been in-
strumented to record for each transformation step the metric
used in this study (the load of the bus), as well as the time
needed in all steps of the transformation process (match-
ing, rewriting, storing and backtracking). For example, in
a single simulated annealing optimization of the industrial
model, 40 intermediate bus load metrics and 72000 perfor-
mance results are obtained.

The coded implementation of the running example uses a
more optimal list implementation instead of a graph. It is
based on the implementation described in [24].

All experiments are run on a cluster consisting of 32 indi-
vidual but equal hardware nodes. Each node has an IntelR©Core
2 CPU X6800 running at 2.93GHz with 8 GB of memory.

6.2 Optimization Results
For each of the techniques and models we show the results

using a bar graph. The X-axis shows the different models
used in the search process, the label is based on the number
of software functions x the number of available ECUs. The

Y-axis shows the total load of the communication bus in the
model. The goal function is to minimize this communica-
tion. We compare the results of the three common match-
ing techniques in rule-based model transformation with each
other. To make the result study complete, we also compare
it with the results of the coded implementation. The height
of the bar corresponds with the average of the load on the
bus. A standard deviation is shown at the top of each bar.
In all the graphs, the cyan bar shows the result of the coded
implementation (CI), the green bar, shows the results when
using the Search Plan matcher (SP), VF2 is shown with a
red bar and Rete is shown in blue. The results between the
different matching techniques and the coded implementation
with a model of equal size should be similar.

6.2.1 Exhaustive Search
The exhaustive search was only executed for a very small

model (namely two software functions mappable to two ECUs)
with VF2 and Search Plans. Both techniques reported the
same amount of solutions, with the same resulted loads on
the bus. The results have been checked manually. No further
experimentation is done due to the high computational and
memory cost of finding all solutions of the mapping problem.
The technique however, works as expected.

6.2.2 Randomized Search
Figure 7 shows the average bus load as well as the standard

deviation of the randomized search on the set of 100 start
models. The figure shows a very high similarity between
the different matching techniques and the coded implemen-
tation.

For the industrial size model, the average load on the bus
is 10.2 byte/ms. This result can be used as a base-line for
the optimization of the models used in simulated annealing
and hill climbing.

6.2.3 Hill Climbing
Figure 8 shows the optimization of nine random mod-

els. As expected, the results between the coded version and
the model transformation based optimization is very similar.
Compared to the randomized search (the start point for the
hill climbing), the hill climbing finds a much better result.
The average load on the bus is down to 4 byte/ms.

In Figure 9 we plot the execution run of three industrial
size models, each with another matching technique. The X-
axis shows the number of examined candidate solutions. The
bus load is shown on the Y-axis. Since the number of steps
required to reach a final solution is not equal between dif-
ferent models, some models reach their final solution faster
than others. Hill climbing improves the solution very fast.
In the late phases of the algorithm, it is hard to find better
solutions and more plateaus are introduced in the graph.

6.2.4 Simulated Annealing
Figure 10 shows the average of optimizing three random-

ized models using simulated annealing. The average load on
the bus with the industrial size model is 3.25 byte/ms, which
is a better result than the solutions found by hill climbing.

As with hill climbing, we depict the execution of three in-
dustrial size models, each with another matching technique
in Figure 11. The intermediate results between the different
temperature drops is plotted. Compared to hill climbing,
the optimization goes much slower. A single temperature



10x3 16x3 22x5 28x6 34x8 40x8
Model

2

0

2

4

6

8

10

12
Lo

a
d
 (

b
y
te

/m
s)

 

CI
SP
VF2
RETE

Figure 7: Randomized Search: Comparison of aver-
age load times between different techniques

10x3 16x3 22x5 28x6 34x8 40x8
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
a
d
 (

b
y
te

/m
s)

 

CI
SP
VF2
RETE

Figure 8: Hill Climbing: Average load times be-
tween different techniques

0K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K
Explored Candidate Solutions

3

4

5

6

7

8

9

10

11

Lo
a
d
 (

b
y
te

/m
s)

SP
RETE
VF2

Figure 9: Hill Climbing: Example run of three dif-
ferent models (each using another matching tech-
nique)

10x3 16x3 22x5 28x6 34x8 40x8
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
a
d
 (

b
y
te

/m
s)

 

CI
SP
VF2
RETE

Figure 10: Simulated Annealing: Average load
times between different techniques

0 5 10 15 20 25 30 35
Temperature Drop

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lo
a
d
 (

b
y
te

/m
s)

SP
RETE
VF2

Figure 11: Simulated Annealing: Example of the
result during cooldown

10x3 16x3 22x5 28x6 34x8 40x8
Model

10-3

10-2

10-1

100

101

T
im

e
 (

s)

CI
SP
VF2
RETE

Figure 12: Randomized Search: Comparison of av-
erage computation times between different tech-
niques



drop in this graph requires the algorithm to look at 1800
different candidate solutions.

6.3 Performance Analysis
In the following paragraphs we compare the performance

and scalability of the three rule-based matching techniques
on randomized search, hill climbing and simulated anneal-
ing. For all graphs, we only compare the time needed to
create a single candidate solution. The time spent in cal-
culating the metric is not included in the graphs. Because
the Rete network by nature contains all of the rules in a
single network, some time is spent in calculating part of the
metric.

6.3.1 Randomized Search
Figure 12 shows the total cost of creating a single random-

ized solution. Note that the scale of the Y-axis (in seconds)
uses a logarithmic scale. The search plan matcher however
is around nine times faster for creating a single solution than
the other two techniques.

The approach scales exponential based on the number of
components in the model. This is normal since the complex-
ity of finding graph isomorphisms in a graph is at least ex-
ponential to the number of edges and vertices in the model.
Note that the X-axis is not fully linear to the number of
components in the model.

6.3.2 Hill Climbing
A different representation is used for showing the perfor-

mance results of the hill climbing algorithm. Figure 13 shows
a bar graph where the top of the bar shows the time needed
to create a single solution for the hill climbing algorithm.
Each bar shows the time needed for each of the components
in the algorithm: Green is the time needed for Matching,
Red is used for Rewriting. Backtracking operation consists
of the Set operation to create a checkpoint shown in blue
and the Get operation to restore a checkpoint shown in ma-
genta. For the rewriter (Rstd) and Matcher (Mstd) we also
show the standard deviation. The first bar of each model,
shows the run-time performance of the Search Plan tech-
nique (P), the second bar shows the results for VF2 (V) and
the third bar depicts the results obtained form using a Rete
network (E).

The results are calculated based on the total time spent
during matching, rewriting, getting and setting the check-
point divided by the number of created candidate solutions.
We compare the techniques on a single candidate solution
and not on the entire solution cost because the total number
of created solutions is not fixed

For both Search Plans and VF2 matching is a very expen-
sive operation while using a Rete net, the match operation
is instantaneous. Rewriting on the other hand is a very ex-
pensive operation using Rete because new facts about the
model are added, removed or updated in the net.

Hill climbing relies heavily on the backtracking operation.
Restoring a checkpoint is almost instantaneous in both VF2
and Search Plans. Rete however uses a transaction based
operation. This results in an opposite rewrite of the pre-
viously rewritten match. Rete with a transactional-based
system for backtracking is thus not a good choice with hill
climbing.

In total, the Search Plan implementation is the most com-
putationally appropriate technique to use while Rete is the

worst.

6.3.3 Simulated Annealing
Finally we show the results of the run-time performance

of the simulated annealing algorithm. Figure 14 shows a
similar graph as shown with hill climbing. In this case, VF2
is clearly the worst because of high matching times. The
difference between Search Plans and Rete is less prominent.
However Rete’s high backtracking and rewriting times are
evident. Figure 15 shows the run-time performance progress
as the temperature drops. Note, at the beginning of the al-
gorithm, less backtracking is required for simulated anneal-
ing. When time progresses and temperature drops, more
backtracking is performed.

Search Plans therefore is the most appropriate technique
to use for simulated annealing.

6.4 Comparison with a coded implementation
Figures 12, 13 and 14 also show the cost of creating a

single solution in the coded implementation of the running
example (C). The coded version is much faster for random-
ized search as well as for simulated annealing. The differ-
ence is significant because the coded implementation creates
only a single candidate solution compared to the matching
of all matches in the model transformation approach. For
hill climbing, the situation is different. Search plans has an
equal computation cost of finding all the neighbours in the
graph compared to finding all the neighbours in the coded
implementation.

6.5 Threats to Validity
The first threat to the internal validity of the study is

the comparison of run-time performance data from VF2,
Search Plans and Rete. We excluded the run-time cost of
calculating the bus load in all algorithms. As a consequence
of the architecture of Rete, only a single net is used for the
transformations in creating a single solution and evaluating
it. The rewriting cost of Rete thus includes some of the run-
time overhead of calculating the bus load. We analyzed the
results of the study with the data included as well, though
it has no effect on the global results shown in the graphs.

The starting point of the optimization runs of hill climb-
ing and simulated annealing is randomly chosen using the
randomized search algorithm. To cope with this and the
high randomness of the different techniques, multiple exe-
cution runs are performed for each of the models. We use
the creation of a single candidate solution as the metric for
the run-time cost of our approach. This is done because the
number of candidate solutions needed to reach a local opti-
mum in hill climbing differs from run to run. To be able to
compare this with simulated annealing, the same compari-
son metric is chosen.

All models, model transformations and data is download-
able from msdl.cs.mcgill.ca so results can be reproduced.

The biggest threat to the external validity of the run-time
performance techniques is that only a single case study is
used in the evaluation of the performance. However, since
the size of the models is incremented in the study some
preliminary conclusions about our approach can be drawn
from this. Another threat to the external validity of the
run-time cost of this approach is the use of our own pro-
totyping tool. Our Rete prototype is manually constructed
though optimizations still need to be implemented. A simi-



10x3 16x3 22x5 28x6 34x8 40x8
Model

0.1

0.0

0.1

0.2

0.3

0.4
T
im

e
 (

s)

P P P P P PV V V V V VE E E E E EC C C C C C

Mstd
Rstd
M
R
G
S
C

Figure 13: Hill Climbing: Average computation
times for a single candidate solution

10x3 16x3 22x5 28x6 34x8 40x8
Model

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 (

s)

P P P P P PV V V V V VE E E E E EC C C C C C

Mstd
Rstd
M
R
G
S
C

Figure 14: Simulated Annealing: Average computa-
tion times for a single candidate solution

Hot Cool
Temp Range

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 (

s)

P P P P P P P P P PV V V V V V V V V VE E E E E E E E E E

M
R
G
S

Figure 15: Simulated Annealing: Influence of
cooldown on backtracking

lar threat stems from other tools used in academy and indus-
try. The different matching techniques have different imple-
mentations and could potentially have a different run-time
cost.

7. DISCUSSION
In this section we discuss some of the issues and opportu-

nities of using a rule-based model transformation approach
to search-based software engineering.

The proposed search algorithms can be used as a starting
point for more advanced optimization techniques. Multi-
ple variants of the presented algorithms are proposed in the
literature. The exhaustive search, for example, can be con-
verted to a branch-and-bound algorithm [25]. By adding
an extra evaluation on partial candidate, solutions branches
can be pruned very early during search to find the optimal
solution when the branch is already less optimal than the
currently found best solution. In hill-climbing, extra fea-
tures can be added in the scheduling language to allow for
random restarts, selecting the steepest descent, etc.

Adding extra domain knowledge to the transformation
models is relatively easy. For example, we can augment the
created rules of the example to guide the search. We know
that communicating software functions should, where possi-
ble be put together on a single ECU. The transformations
can encode this knowledge by adding an extra rule that is
used in the randomized case. The rule can also be used as
a preferred rule during hill climbing. When no matches are
found, the other two rules can be used as a fall-back.

However, the main disadvantage of the approach is the
run-time performance when compared to an optimal repre-
sentation of the search problem using for example lists, as
shown is Section 6. This is attributed to the complexity of
finding of sub-graphs in the model. Using the correct type
of matching technique on a model-to-model basis can help
to boost the performance of the approach. For this problem,
the Search Plan matcher outperforms the other techniques
for all the performed experiments. However, since our Rete
matcher is the least mature matching technique in our tool
and the constructed net is not optimal, the technique shows
promise.

Combinations of matchers can improve the computational
expense of the model transformation approach. For exam-
ple, backtracking in simulated annealing happens more often
in the later phases of the algorithm. Since this is a very ex-
pensive operation with the Rete technique, a switch can be
made to the Search Plan technique after a certain amount
of cycles. Heuristics need to be developed based on sound
experimentation with lots of different search problems.

Parallelism could also be used to increase the performance
of this approach. In exhaustive searches, the different branches
can be explored in parallel. Randomized search can create
multiple solutions in parallel. Hill climbing and simulated
annealing benefit from parallelism by optimizing multiple
random solutions in parallel so more of the search-space is
covered in a single execution of the algorithm.

Finally, all matches are always matched in the underlying
model even when this is not always necessary. For exam-
ple, in simulated annealing, only a single random match is
required for the algorithm. The matching of all instances
of the pattern is done because our implementations of both
VF2 and Search Plans always find the same match in the
model when only a single match is requested. It is deter-



ministic in the sense that the search for matches always
start at the same point in the graph. Other implementa-
tions of the algorithms do not necessarily have this feature
and are non-deterministic in selecting the start point in the
model. This could work to the advantage of the random-
ized search and simulated annealing and would increase the
performance drastically. However, when a true uniform ran-
dom neighbour is required for the optimization algorithm to
work, a true random matcher needs to be constructed.

Another approach to improving the performance of the
matching is to use a divide and rule strategy. Scoping [26]
can be used to select subparts of the model to optimize. The
scoping can dynamically change (and broaden over time) to
reduce the cost of matching during hill climbing where all
matches are required for the algorithm to work.

Introducing SBO in model transformation is best used
when the construction of an optimal search representation
is hard, very time-consuming or even impossible. The rules
to create a candidate solution are designed in the domain
language of the experts. This allows non optimization ex-
perts to design optimization problems without the need

8. RELATED WORK
In the SBSE community, models have already been used

as a representation for complex problems. But to the best of
our knowledge, the use of SBO techniques in model transfor-
mations has not been explored in a structural way. Combin-
ing modelling, model transformation and search techniques
has been proposed before and related work can be found in
two areas: (a) CMSBSE and (b) Design-Space Exploration.

8.1 CMSBSE
In [5] authors advocate the use of models, domain-specific

modelling and model transformation in SBSE. This implies
however that SBO techniques should be present in the model
transformations. Solutions for combining search techniques
in model transformations are not discussed.

An example of the use of models and search can be found
in [27]. The authors search for a model transformation to
translate a sequence diagram into a colored Petri net. Simu-
lated annealing as well as Particle Swarm Optimizations are
used to search the large design-space of such a problem. The
authors use this experience in [28] to create a framework for
using genetic algorithms with models. A generic encoding
metamodel is proposed as well as the use of model trans-
formations for encoding and decoding the domain specific
models.

8.2 Design-Space Exploration
Transformation based approaches to Design-Space Explo-

ration is a relatively new topics in the field. Two approaches
are used: In the first approach, models are transformed to
another representation more suitable for exploration. For
example, the DESERT tool-suite [29] provides a framework
for design-space exploration. It allows an automated search
for designs that meet structural requirements. Possible solu-
tions are represented in a binary encoding that can generate
all possibilities. A pruning tool is used to allow the user
to select the designs that meet the requirements. These
can then be reconstructed by decoding the selected design.
In [30], Saxena and Karsai present an MDE framework for
general design-space exploration. It comprises of an abstract
design-space exploration language and constraint specifica-

tion language. Model transformation is used to transform
the models and constraints to an intermediate language.
This intermediate language can be transformed to a rep-
resentation that is used by a solver. Finally, the OCTOPUS
toolchain [31] is a domain specific tool for the design-space
exploration of embedded systems. The tool is organized
around an intermediate language used for connecting dif-
ferent tools together.

A second approach uses model transformation to search
the design-space using the model itself. Schätz et al. devel-
oped a declarative, rule-based transformation technique [32]
to generate the constrained solutions of an embedded sys-
tem. The rules are modified interactively to guide the ex-
ploration activity. In [33] a transformation-based approach
is proposed to generate the full design-space of a cyber-
physical system. The transformation language is based on
Answer-Set Programming. Different approximation levels
are introduced where non-feasible solutions can be pruned.
In [34], a framework for guided design-space exploration us-
ing graph transformations is proposed. The approach uses
hints, provided by analysis, to reduce the traversal of states.

9. CONCLUSIONS AND FUTURE WORK
In this paper we showed that it is feasible to include four

well known SBO techniques in rule-based model transfor-
mations. Candidate solution are intuitively created in the
language of the domain experts using transformation rules.
The search techniques are incorporated in the scheduling
language of the model transformation. We identified the
different transformation language features that make this
approach possible. Using a resource allocation example, we
show that the proposed techniques work as well as a hand
made coded implementation of the same problem. Further-
more, the run-time performance is compared for the running
example between three different types of model transforma-
tion matching techniques and separately with the more opti-
mal coded implementation. In our example, Search Plans is
the most promising technique for including search in model
transformations. Compared to a more optimal coded im-
plementation, the model transformations are more compu-
tationally expensive but can be used when it is hard, time-
intensive or impossible to create an optimal search amenable
representation of the software engineering problem at hand.

Our next steps in including search in transformation mod-
els include improving the current performance of the ap-
proach. We will focus on creating a non-deterministic and
random matcher, so a single non-deterministic or random
match can be found in the model without the need of match-
ing all the possible neighbours of a solution. Another opti-
mization uses the notion of locality. Partitioning models
into scopes can improve run-time performance.

10. REFERENCES
[1] Douglas Schmidt. Model-Driven Engineering.

Computer, (February):25–31, 2006.

[2] T. Kühne. Matters of (meta-) modeling. Software and
Systems Modeling, 5(4):369–385, 2006.

[3] S. Sendall and W. Kozaczynski. Model transformation:
the heart and soul of model-driven software
development. IEEE Software, 20(5):42–45, 2003.

[4] Mark Harman, S. Afshin Mansouri, and Yuanyuan
Zhang. Search-based software engineering. ACM



Computing Surveys, 45(1):1–61, November 2012.

[5] F. Burton and S. Poulding. Complementing
Metaheuristic Search with Higher Abstraction
Techniques. In 1st Workshop on Combining Modelling
and Search-Based Software Engineering, 2013.

[6] M. Harman, R. Paige, and J. Williams. 1st
international workshop on combining modelling and
search-based software engineering (CMSBSE 2013). In
Proceedings of the 2013 International Conference on
Software, number Cmsbse, pages 1513–1514, 2013.

[7] Levi Lucio, Sadaf Mustafiz, Joachim Denil, Maris
Jukss, and Hans Vangheluwe. FTG + PM : An
Integrated Framework for Investigating Model
Transformation Chains. In SDL 2013: Model-Driven
Dependability Engineering, pages 182—-202. Springer,
2013.

[8] Sadaf Mustafiz, Joachim Denil, Levi Lúcio, and Hans
Vangheluwe. The FTG+ PM framework for
multi-paradigm modelling: An automotive case study.
In Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling, pages 13–18, 2012.

[9] Joachim Denil, Gang Han, Magnus Persson, Paul De
Meulenaere, Haibo Zeng, Xue Liu, and Hans
Vangheluwe. Model-Driven Engineering Approaches to
Design Space Exploration. Technical report, McGill
University, SOCS-TR-2013.1, 2013.

[10] Wei Zheng, Qi Zhu, Marco Di Natale, and
Alberto Sangiovanni Vincentelli. Definition of Task
Allocation and Priority Assignment in Hard
Real-Time Distributed Systems. 28th IEEE
International Real-Time Systems Symposium (RTSS
2007), pages 161–170, December 2007.

[11] Chung Laung Liu and James W. Layland. Scheduling
Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM,
20(1):46–61, 1973.

[12] S. Frey, F. Fittkau, and W. Hasselbring. Search-based
genetic optimization for deployment and
reconfiguration of software in the cloud. In
International Conference on Software Engineering,
pages 512–521, 2013.

[13] Paul Emberson and Iain Bate. Minimising Task
Migration and Priority Changes in Mode Transitions.
13th IEEE Real Time and Embedded Technology and
Applications Symposium (RTAS’07), pages 158–167,
April 2007.

[14] G. Antoniol, M. Di Penta, and M. Harman.
Search-based techniques for optimizing software
project resource allocation. In Genetic and
Evolutionary ComputationâĂŞGECCO 2004, pages
1425–1426. Springer Berlin Heidelberg, 2004.

[15] Eugene Syriani, Hans Vangheluwe, and Brian
LaShomb. T-Core: a framework for custom-built
model transformation engines. Software & Systems
Modeling, August 2013.

[16] Stephen A. Cook. The complexity of theorem-proving
procedures. In STOC, pages 151–158, 1971.

[17] Luigi Cordella, Pasquale Foggia, Carlo Sansone, and
Mario Vento. A (sub)graph isomorphism algorithm for
matching large graphs. IEEE transactions on pattern
analysis and machine intelligence, 26(10):1367–72,
October 2004.

[18] Akos Horvath, Gergely Varró, and Dániel Varró.
Generic Search Plans for Matching Advanced Graph
Patterns. Electronic Communications of the EASST,
6(International Workshop on Graph Transformation
and Visual Modeling Techniques), 2007.

[19] C. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial intelligence, 19(3597):17–37, 1982.

[20] Gábor Bergmann, András Ökrös, István Ráth, Dániel
Varró, and Gergely Varró. Incremental pattern
matching in the viatra model transformation system.
Proceedings of the third international workshop on
Graph and model transformations - GRaMoT ’08,
page 25, 2008.

[21] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems
Journal, 45(3):621–645, 2006.

[22] Arend Rensink and Jan-hendrik Kuperus. Repotting
the Geraniums : On Nested Graph Transformation
Rules Repotting the Geraniums : On Nested Graph
Transformation Rules. Electronic Communications of
the EASST, 18, 2009.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by Simulated Annealing. Science,
220(4598):671–680, 1983.

[24] Haibo Zeng and Marco Di Natale. Improving
Real-Time Feasibility Analysis for Use in Linear
Optimization Methods. 2010 22nd Euromicro
Conference on Real-Time Systems, pages 279–290,
July 2010.

[25] A.H. Land and A.G. Doig. An Automated Method of
Solving Discrete Programming Problems.
Econometrica, 28(3):497–520, 1960.

[26] Maged Elaasar Maris Jukss, Clark Verbrugge and
Hans Vangheluwe. Scope in model transformations.
Technical report, School of Computer Science, McGill
University.

[27] Marouane Kessentini, Manuel Wimmer, Houari
Sahraoui, and Mounir Boukadoum. Generating
transformation rules from examples for behavioral
models. In Proceedings of the Second International
Workshop on Behaviour Modelling Foundation and
Applications - BM-FA ’10, pages 1–7, New York, New
York, USA, 2010. ACM Press.

[28] M. Kessentini, P. Langer, and M. Wimmer. Searching
Models, Modeling Search. In Proceedings of the 1st
Workshop on Combining Modelling with Search-Based
Software Engineering, pages 51–54, 2013.

[29] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts.
Constraint-based design-space exploration and model
synthesis. In Embedded Software, pages 290–305.
Springer, 2003.

[30] Tripti Saxena and Gabor Karsai. MDE-based
approach for generalizing design space exploration. In
Model Driven Engineering Languages and Systems,
pages 46–60. Springer, 2010.

[31] Twan Basten and Emiel Van Benthum. Model-driven
design-space exploration for embedded systems: the
octopus toolset. In LEVERAGING APPLICATIONS
OF FORMAL METHODS, VERIFICATION, AND
VALIDATION, LNCS, pages 90–105. Springer, 2010.

[32] B. Schätz, F. Hölzl, and T. Lundkvist. Design-Space



Exploration through Constraint-Based
Model-Transformation. In 2010 17th IEEE
International Conference and Workshops on
Engineering of Computer-Based Systems, pages
173–182. IEEE, 2010.

[33] Joachim Denil, Antonio Cicchetti, Matthias Biehl,
Paul De Meulenaere, Romina Eramo, Serge Demeyer,
and Hans Vangheluwe. Automatic Deployment Space
Exploration Using Refinement Transformations.
Electronic Communications of the EASST Recent
Advances in Multi-paradigm Modeling, 50, 2011.

[34] A. Hegedus and A. Horváth. A model-driven
framework for guided design space exploration. In
Automated Software Engineering (ASE), 2011,
number i, 2011.


