
An Overview of Model Transformations

for a Simple Automotive Power Window

†Levi Lucio, ‡Joachim Denil, †,‡Hans Vangheluwe
†McGill University, ‡University of Antwerp

15 January 2012

Abstract

The goal of this report is to illustrate the Model-Based Development of a simple automotive control system.
The Power Window example was chosen as one the hand, it is simple enough to not require extensive automotive
and control theory background, and on the other hand, it is complex enough to be representative for Model-
Based Development in the automotive domain. This complexity mainly stems from the use of models in different
formalisms. Models in different formalisms are composed as well as transformed. Furthermore, this example was
chosen as we already have some concrete experience with this case, having built a full hardware realization of it
using Model-Based techniques.

This example, and this document, are meant as a starting point for further discussion among NECSIS partners
(and in particular, with GM, to discuss correctness and completeness).

It is hoped that after sufficient refinement, this example can be used as a common case study by NECSIS
partners, each focusing on different aspects (such as safety or variability) and techniques (simulation, code
synthesis, model checking of models and transformations). As such it can be used as a benchmark for individual
researchers to test their own approaches and techniques. If a common representation is used, exchange of models
will be possible and different techniques developed by the partners can be combined.

The main focus of this document, developed within the NECSIS Theme on “analysis and transformation” is
transformation. Different types of transformations are identified and described by means of their typical input-
models and expected output models.

Note that though we have already implemented some of these transformations, they are left out of this
document on purpose not to bias other researchers in their design of transformations satisfying the requirements.
A first attempt is made to categorise the properties of the transformations. Also, the link between the different
transformations is depicted in a model transformation graph.

This document is a first version of the transformations required for developing the software to control a Power
Window. We are currently working on: a better structuring of the transformation chains presented here in the
form of a formalised transformation graph; a categorisation and classification of the of model transformations
that can help us identifying their properties.

1 Introduction and Problem Statement

In this document we will introduce a study of the application of Model Driven Engineering (MDE) techniques to the
development of the software necessary for the operation of a power window in an automotive vehicle. In particular,
the main purpose of this study is to arrive to a set of model transformations
Our first goal throughout this document is to present an MDE example approach to the development of the software
controller for the power window. Using MDE implies: 1) defining or reusing a set of formalisms for the specification of
models; 2) defining or reusing a set of transformations between those formalisms. Using these artifacts it is possible
to define a chain of development (or methodology) where models of software expressed in languages familiar to
humans are submitted to a number of transformations into appropriate formalisms such that eventually executable
code that can be run on a machine is reached.

2 Background Concepts

MDE encompasses both a set of tools and a loose methodological approach to the development of software. The
claim behind Model Driven Engineering is that by building and using abstractions of the processes the software

1



engineer is trying to automate, the produced software will be of better quality than by using a general purpose
programming languages (GPL). The reasoning behing this claim is that abstractions of concepts and of processes
manipulating those concepts are easier to understand, verify and simulate than computer programs. The reason for
that is that those abstractions are close to the domain being addressed by the engineers, whereas general GPLs
are built essencially to manipulate computer architecture concepts. Of course, the reasoning holds when the used
abstractions are suitable to describe the addressed domain.

2.1 Models and Metamodels

The central artifact in MDE is the model. A model in the computing world is a simplification of a process one wishes
to capture or automate. The simplification is such that it does not take into account details that can be overseen
at a given stage of the engineering cycle. The purpose is to focus on the relevant concepts at hand – much as for
example a plaster model of a car studying aerodynamicity will not take into account the real materials a car is made
of.
In the computing world a model is defined by using a given language. Coming back to the car analogy, if an engineer
wishes to have a computational model of a car for three dimensional visualisation, a language such as the one defined
by a Computer Assisted Design (CAD) tool will be necessary to express a particular car design. In the computing
world several such languages – called metamodels – are used to describe families of models of computational artifacts
that share the same abstraction concerns. Each metamodel is a language (also called formalism) that may have
many model instantiations, much as in a CAD tool many different car designs can be described.

2.2 Domain Specific Modeling

This leads us to the notion of Domain Specific Modeling. Domain Specific Modeling formalizes the fact that certain
languages, or classes of languages – called Domain Specific Languages (DSLs) – are appropriate to describe models
in certain domains. A famous white paper on the subject from MetacaseTM [11] presents annecdotal evidence that
DSLs can boost productivity up to 10 times, based on experiences with developing operating systems for cell phones
for NokiaTM and LucentTM . Following these encouraging first results the scientific community is currently investing
on the research of DSLs and environments for the construction of such languages. The result of this research has
materialized in formalisms and tools such as EMF and GMF [12], AToM3 [5] or Microsoft’sTM DSL Tools [4].

2.3 Multi-Paradigm Modeling

Multi-Paradigm Modeling (MPM), as introduced by Mosterman and Vangheluwe in [13], is a perspective on software
development that advocates not only that models should be built at the right level of abstraction regarding their
purpose, but also that automatic model transformations should be used to pass information from one representation
to another during development. In this case it is thus desirable to consider modeling as an activity that spans different
models, or paradigms. The main advantage that is claimed of such an approach is that the software engineer can
benefit from the already existing multitude of languages and associated tools for describing and automating software
development activities – while pushing the task of transforming data inbetween formalisms to specialized machinery.
To make this idea more concrete, one may think of a UML statechart model representing the abstract behavior of
a software system being converted into a Java model for execution on a given platform; or of the same statechart
being transformed into a formalism that is amenable for verification. Another possible advantage of this perspective
on software development is the fact that toolsets for implementing a particular software development methodology
become flexible. This is due to the fact that formalisms and transformations may be potentially plugged in and out
of a development toolset given their explicit representation.
The idea of Multi-Paradigm Modeling is close to the idea of Model Driven Engineering (MDE): in MPM the emphasis
is mainly on the fact that several modeling paradigms are employed in modeling; MDE is rather focused on proposing
a methodology where a set of model transformations are chained in order to pass from a set of requirement for a
system to a piece of running software on a given platform.

2.4 Model Transformations

The missing piece in this set of concepts are Model Tranformations. Model transformations allow passing relevant
information from one modeling formalism to another and are, according to Sendall and Kozaczynski [17] the “heart
and soul of model-driven software development”. Model transformations have been under study from a theoretical
point a view for a number of years (see e.g. the work of Ehrig et al [9]), but only recently have become a first

2



class citizen in the the software development world. Their need came naturally with the fact that MDE started
to be used professionally in some software development environments, e.g. software for mobile phones or software
for the automotive industry. Implementations for transformation languages such as ATL [2] or QVT [8] have been
developed in the last few years and provide stable platforms for writing and executing model transformations.
Model Transformations can have multiple uses in MDE: for example, if it becomes necessary to transform a UML
statechart into code a model transformation can be seen as a compiler ; also, a transformation to translate the
statechart into a formalism amenable to verification by some existing tool may be seen as a translator. These
transformations clearly exist in traditional software development, although in an implicit fashion. Being that in
an MDE setting model transformations are responsible for translating models from one formalism into another, it
becomes important for the quality of the whole software development process that those transformations are correct.
Model transformations are pieces of software. The verification of software is typically achieved by proving that
a given program has certain formal properties that insure a certain level of correctness regarding that program’s
specification. The approaches in the literature to the problem of verifying model transformation can be divided
in two main groups: some authors such as Akehurst [1], Narayanan and Karsai [15] or Lúcio and Barroca [10] are
interested in proving that certain relations hold between the grammar of the input model and the grammar of the
output models. In order to clarify this approach consider one want to prove an automatic English to French translator
works properly. It might be interesting to prove that all english sentences composed of a verb and of a predicate
will be translated into a french sentence composed equally of a verb and a predicate. Such a vision of correctness
of a model transformation can be seen as syntactic since the proof does not explicitly take into consideration the
meaning of the input and output models, but rather their structure. The second group of approaches is explicitly
concerned with proving that parts of the meaning, or semantics, of input models are given the correct semantics in
the output models. Again, to give a concrete example, one may wish to show that if in a statechart model a certain
kind of user is always be able to execute a given activity, then in the Java code generated from that statechart the
transformed user will still be able to execute the transformed activity. Authors such as Varró and Pataricza [20] or
Narayanan et al [14] have proposed techniques to deal with semantics preservation when model transformations are
applied.

3 Engineering the Power Window Software

A power window is basically an electrically powered window. Such devices exist in the majority of the automobiles
produced today. The basic controls of a power window include lifting and descending the window, but an increasing
set of functionalities is being added to increase the comfort and security of the vehicle’s passengers. To manage this
complexity while reducing costs, automotive manufacturers use software to handle the operation and overall control
of such devices. However, because of the fact that a power window is a physical device that may come into direct
contact with humans, it becomes imperative that sound construction and verification methodologies are used to
build such software.
When given the task to build the control system for a power window, a software engineer will take several variables
into consideration: (1) the physical power window itself, which is composed of the glass window, the mechanical
lift, the electrical engine and some sensors for detecting for example window position or window collision events; (2)
the environment with which the system (controller plus power window) interacts, which will include both human
actors as well as other subsystems of the vehicle – e.g. the central locking system or the ignition system. This idea
is the same as followed by Mosterman and Vangheluwe in [13]. According to control theory [7], the control software
system acts as the controller, the physical power window with all its mechanical and electrical components as the
process (also called the plant), and the human actors and other vehicle subsystems as the environment.
In the next few sections we will go through a possible set of model driven engineering activities when building the
software controller for the power window system. We will start by the modeling activities which involve developing
domain specific languages for defining the controller, the plant and the environment. We will then carry on to
explain how models for verification, simulation and finally code generation can be achieved from the three initial
models.
Note that in what follows we do not mean to be prescriptive or complete regarding the activities we are going to
describe or the adopted engineering methodology. Our purpose is to provide a reasonable example of MDE in the
automotive software development context, that illustrates the usage and power of state of the art MDE artifacts
and tools.

3



3.1 Modeling Activities

As mentioned before, we consider that during the development of a software controller for a power window it is
necessary to take into consideration both the description of the physical hardware itself – the plant – as well as the
description of the environment interacting with the power window. While the fact that we need to take the plant
into consideration when building a controller is self explanatory, the environment requires further analysis. Several
publicly available documents such as [18, 19] describe safety measures associated with the operation of a power
window (in the generality of the term, taking into consideration also space partition panels and sun roofs). In these
documents several situations of interactions of the power windows with humans (and an external environment) are
mentioned. The largest concern is clearly the situation where where somebody becomes unintentionally physically
caught by a closing power window. Some power window systems include automatic reversal systems which detect
if an object is blocking the windows path and automatically stops the window’s movement. Other systems do not
include the automatic stopping and backing system and a number of other strategies are put into place such that
accidents where somebody becomes caught by the power windows (typically children) do not happen. In order to
automatically verify the power window and the car in general has correctly implemented those strategies we will
take into consideration the actors in the environment (e.g. adults, children) and model their interactions with the
power window and relevant parts of the car.
We will now introduce three domain specific languages that will allow us to describe power window plants, controllers
and environments. Our idea behind splitting these three artifacts involved in the development of a power window
is the fact that they describe somewhat orthogonal concerns that can be replaced in a modular fashion during the
development of the same, or multiple power window controllers. Followed by each domain specific language we will
describe one of its models both as an example and also as a means of providing input for subsequent stages of
engineering of the power window controller.
Note that in the text that follows all the DSLs’ grammars are described using metamodels expressed as class
diagrams. Metamodels essentially identify and define the components of a language (described as classes), and the
relations between those components (described as associations between classes). Note also that, because we have
taken a modular approach to the development of the PowerWindow software, our formalisms allow encapsulation
in the sense that the models of the different languages will be contained inside boundaries. These boundaries
contain ports that are linked to the objects inside. In order to compose models describing different aspects of the
PowerWindow, in what follows we will also describe a Network language that connects ports of multiple formalisms
together.

3.1.1 Power Window Description Language

Figure 1: Power Window Description Language Metamodel

In figure 1 we present the metamodel for the a language allowing to describe the plant for the controller we wish to

4



develop. In the power window case this amounts to a language allowing the description of the hardware configuration
for a given power window device.
Before we start the description of the Power Window Description Language (PWDL) metamodel, take note that
classes in a metamodel can be regular or abstract. Abstract classes have their name in italicised font and, unlike
regular classes, cannot be instantiated. On the other hand relations can be of two kinds: association, noted with a full
arrow, or inheritance, noted with a dashed arrow. Note that both association and inheritance are directed relations
and also that associations can have containment semantics. Containment semantics means that the existence of an
instance of the class at the association’s end implies the existence of an instance of the class at the association’s
origin.
Coming back to the PWDL, the main class of the language is the PowerWindow class, which is abstract and is
specialized as a Side window or a roof window. A Powerwindow includes a set of switches which can be of two
kinds: Lockout switches allow removing control from other PowerWindows in the car (as specified by the controls
association); Rocker or PushPull switches which allow controlling window movement. Rocker and PushPull switches
have different physical characteristics: while Rocker switches are used to activate window movement by being acted
upon on the horizontal axis, pushpull switches need to be acted upon on the vertical axis by being pushed down
or pulled up. Finally, a Powerwindow may also have sensors for detecting if an object is blocking the window from
going up. These sensors may be of two types: Infrared or ForceDetecting. Infrared sensors detect an object when
a light beam is crossed; ForceDetecting sensors make use of the fact that if an object is being pushed up by the
window then more current will be drawn by the electrical engine.

Figure 2: Example Model in the Power Window Description Language

In figure 2 we present a model in the PWDL, where a configuration of two powerwindows of an automobile is
described. The model includes a driver and a passenger powerwindows, where the driver’s window has three buttons:
a pushpull button for controlling the driver’s window, a pushpull button for controlling the passenger’s window,
and a lockout switch for disabling/enabling the control of the passenger’s window. The passenger’s window includes
a rocker button and a infrared sensor meaning the window automatically stops lifting when an object obstructs its
path.

3.1.2 Environment Description Language

The Environment description language, which metamodel is described in figure 3, allows describing interactions of
the outside world with the PowerWindow. The language is inspired from the work of Dhaussy [6] and has been
applied to the verification of critical systems, e.g. in military aviation [16].

5



Figure 3: Environment Description Language Metamodel

Every model in the environment description language has a top activity, which can be of type parallel, sequence
or alternative. A top activity may contain other activities, in an arbitrarily deep hierarchy. As the names indicate,
activities which are executed in parallel will occur simultaneously, sequential activities will occur one after the other
in a predefined fashion, and, from a set of alternative activities, one is chosen non-deterministically to be executed.
The basic activity is the communication sequence which is a sequence of events being exchanged with another
system. Events may be of type output, meaning they are sent towards the outside system, or of type input, meaning
they are expected from the outside system. An event has an amount of time in seconds associated to it, which is
the amount of time the event will take to complete.
In figure 4 we present a model described in the environment description language. The model presents an example of
an interesting interaction with the powerwindow hardware described in figure 2 where the driver and the passenger
both issue a sequence of commands in parallel. The parallel block represented by the red square includes two
command sequences that have a sequence of output events. Each graphical representation of an output event
includes on the right of the box the amount of time the event will take until completion. In particular, the stickhead
command means the passenger has blocked the window rolling up by blocking it with some object. Note that an
environment could contain other actors, even other systems. Interesting examples would be the ignition system which
could interact with the powerwindow by disabling window action when key is off the ignition, or the speedometer
which could force rolling up the windows once a given speed would be reached.

3.1.3 Control Description Language

The control description language defined as in the metamodel in figure 5 allows describing the operation of the
plant according to the plant’s current state as well as to the inputs received from the environment. The language is
inspired from UML statecharts and can be seen as a language for describing finite state automatons.
In figure 6 a model for controlling a powerwindow with object detection can be observed. The control logic states
that the window can be either in neutral mode (with the electrical engine stopped), moving up or moving down.
The control logic will change state if a new control command will be issued by one of the buttons attached to the
window. The model includes dealing with stopping window action if an object is detected blocking window lifting.
In this case the window control logic goes into an emergency state and then into the neutral state which stops
window movement (review this part because the neutral state has to synchronize with the plant).
In figures 7 and 8 we present additional models in the control description language required to describe the control
aspects of a powerwindow without obstacle detection, as well as of a lockout button.

6



Figure 4: Example Model in the Environment Description Language

Figure 5: Control Description Language Metamodel

3.1.4 Network Description Language

It becomes now necessary to compose the plant, environment and control models presented in figures 2, 4, 6,
7 and 8. In figure 9 we present the metamodel of a Network Description language used for this task. The idea
behind this language is very simple: components can be connected to other components, where a component is
seen as a black box and connections are made by linking components’ ports. Each of the formalisms introduced in
sections 3.1.1, 3.1.2 and 3.1.3 has the notion of ports, represented in concrete syntax by the black squares over the
boundaries of each model.
In figure 10 the network model for our powerwindow example is presented. Note that the internal detail of each of
the models is abstracted and only the connections between the ports are visible.

3.2 Verification Activities

We will now describe the generation of a Petri Net from the DSL models described in section 3.1. The Petri
Net formalism is an automaton like formalism involving places and transitions (resembling the UML states and
transitions) but also with the capability of describing concurrency. Tokens distributed by places allow describing

7



Figure 6: Window with Obstacle Detection Control Model

Figure 7: Window with No Obstacle Detection Control Model

Figure 8: LockOut Control Model

that certain resources are distributed in the system and the non-deterministic firing of transitions simulates the
consumption of resources in places and production of new resources in other places.
The goal of generating a Petri Net from the DSL models is to build an artifact that can be used for the exhaustive
exploration of functional scenarios of operating the powerwindow. Many model checking tools exist that will take

8



Figure 9: Network Description Language Metamodel

Figure 10: Network Model for the Powerwindow

as input a Petri nets model and a property and will decide if the property is true or not in the model. This Petri net
may be used to verify certain properties hold in our powerwindow definitions. For example, it may be important to
show that if the driver is commanding the passenger window to go up or down, then the passenger cannot operate
his/her window; or, that when an obstacle blocks a sensor-equipped powerwindow when going up, the window will
stop. In this section we will describe how the Petri net representing the behavior of the composition of the DSL
models presented in section 3.1 is obtained by using a set of transformations. We will however not concern ourselves
with the properties to be proved about the Petri net representation of the system, which would be the target of a
different kind of study than the one presented in the present document.
In what follows we will start by presenting the transformation of each of the DSL models presented in section 3.1
into Petri nets. We will also transform the network model into a specialized network model that will be used in the
composition of the Petri nets obtained from the DSL models. Notice that Petri nets are a discrete formalism, as
opposed to the causal block diagram formalism presented in section 3.3 which is a formalism capable of representing
continuous behavior. The discrete nature of Petri nets comes from the fact that every state of the execution of a
Petri net model can be identified as a set of tokens occurring in a set of places.

9



Notice that in the following sections we will use a particular kind of Petri nets which we call modular Petri nets.
Modular Petri nets are an extension of the Petri Net formalism where regular Petri nets are encapsulated by
boundaries. Those boundaries expose ports to the outside of the system. Petri net transitions inside the boundaries
connect to the module’s ports, which means they can be synchronized with other modules via a network model.

3.2.1 Transformation of the Environment Model into Petri Nets

Figure 11: Transformed Environment in Encapsulated Petri Nets

In figure 11 we depict the result from the transformation of the environment DSL model presented in figure 4 into
modular Petri nets. The transformation recursively treats all the parallel, sequence, alternative and communication
sequence activities in the environment model and builds the necessary modular Petri net for them. In the modular
Petri net in figure 11 we can observe that the two communication sequences from the environment model in figure 4
have been merged into one single sequence of transitions. This is so because the two activities occur during the
same timeline, where each relevant discrete moment is represented by a transition. The transformation from the
environment DSL into a Petri net will compute how many discrete moments are required and will generate a
corresponding amount of Petri net transitions. The ordering of the events depends on the amount of time each of
them requires to be completed. The Petri net transitions are synchronized with ports of the module in order to
output the events to other components. Some of the events can happen simultaneously (because their time distance
from the start of the activity is the same), which means the same Petri net transition connects to two ports.
The translations of the alternative and sequential blocks are less complex than the ones of the parallel block because
the timelines for each of those blocks do not need to be composed, although they need to be assembled together such
that one or the other is chosen (alternative), or they are sequentially executed (sequence). A final observation on
the transformation of environment models into modular Petri nets is the fact input events coming from the outside
of the components are treated by synchronizing the Petri net’s transitions with them. This is done is such a way
that a transition of the component can only fire when receiving an input from an external component.

3.2.2 Transformation of the Plant Model into Petri Nets

Of the two windows in figure 13, the driver window does not include an obstacle detection sensor, while passenger
window does include an infrared sensor. Two modular Petri nets are generated from the Plant DSL model: in figure 12
a discrete behavior of a powerwindow without an obstacle detecting sensor can be observed. During operation the
window can either be at the bottom of the frame (meaning the window is completely open), somewhere in the middle
of the frame (meaning the window is partially open), or at the top of the frame (meaning the window is closed).
The behavior of the plant is dependent on the behavior of the controller which can giving a command to go up,
down or the neutral command. In figure 13 the behavior of a powerwindow plant with an infrared sensor is shown.
The basic states are the same as in the modular Petri net powerwindow without the infrared sensor, but additional
states where an obstacle blocking window movement up is detected have been added.
The modular Petri nets in both figures 13 and 12 include the necessary ports for communication with the controllers.
Notice that we could have chosen to represent the physical behavior of the powerwindows differently if a more more
precise behavioral representation would be required. For example, we could have a finer representation of the position
a window in its physical frame or a finer representation of obstacle detection by adding more intermediate places
to the Petri nets presented in figures 13 and 12. In fact, we have chosen as example the infrared obstacle sensor
which outputs a binary signal (obstacle detected or no obstacle detected). In order to generate a modular Petri

10



Figure 12: Transformed Driver Window Plant Model

Figure 13: Transformed Passenger Window Plant Model

net representation of a powerwindow with a force detecting obstacle sensor we would need a representation of force
detection which would be finer than the one required for the infrared sensor. This is so because power consumption
values in the powerwindow electrical motor need to be monitored such that the window is not stopped unless
sufficient resistance for is applied to the window.

3.2.3 Transformation of the Control Models into Petri Nets

Figures 15, 15 and 16 represent the modular Petri Net behavior of three controllers: the controller for a powerwindow
switch without obstacle control, the controller for a powerwindow with obstacle control, and the controller for the
lockout switch. Unsurprisingly, these are the switches that can used when building powerwindow plants.
Because the semantics of the simplified statecharts we have used to define the controllers can be easily simulated
using Petri nets, the resulting modular Petri nets presented in figures 14, 15 and 16 are structurally very similar

11



Figure 14: Transformed Window without Obstacle Detection Control Model

Figure 15: Transformed Window with Obstacle Detection Control Model

Figure 16: Transformed LockOut Control Model

to their counterparts in figures 7, 6 and 8 respectively – statechart states are transformed into modular Petri net
places and statechart transitions are transformed into Petri net transitions. The modular Petri net’s transitions are
synchronized with module’s ports having the same name.

12



3.2.4 Transformation of the Network Model

The network model we have presented in figure 9 connects the environment, control and plant domain specific
components we have defined in section 3.1. The network at the domain specific level is transformed into a specific
network that connects the modular Petri net components described in sections 3.2.1, 3.2.3 and 3.2.2. The result of
this transformation is presented in figure 17.
At the domain specific level many details of the behavior of the modular components and how they are linked together
is abstracted. This is so because the domain specific languages for the powerwindow are built to, in principle, allow
the automotive engineer to be as expressive as possible using minimalistic domain specific constructs. For example,
because the complete set of window movement ports is abstracted at the DSL level, they need to be expanded both
at the component and at the network level. Also, in the domain specific network it is abstracted how the controllers
send signals to each of the powerwindows defined in the plants. As can be observed in figure 17 this issue is tackled
in our example by connecting the appropriate kind of controllers to the modular Petri net generated plants for the
two powerwindows present in the plant in figure 2.

3.2.5 Composition Transformation

The composition transformation builds the connections between the modular Petri nets obtained in sections 3.2.1, 3.2.3
and 3.2.2, by using the network model in figure 17. For reference, we present in figure 18 the set of petri Nets that
are to be composed, without their communication ports. In figure 19 we present the composed version of figure 17.
Note that, not to overwhelm the reader, in figure 19 we provide only some of the composition links between the
individual nets.

3.3 Simulation Activities

In this section, the generation of a hybrid simulation model from the DSL models in section 3.1 is described. The
hybrid simulation is composed out of the Causal Block Diagram formalism and the statechart formalism. Causal
Block Diagrams (CBD) are a general-purpose formalism used for modeling of causal, continuous-time systems. CBDs
are commonly used in tools such as MathWorks Simulink R©. CBDs use two basic entities: blocks and links. Blocks
represent (signal) transfer functions, such as arithmetic operators, integrators or relational operators. Links are
used to represent the time-varying signals transmitted between connected blocks. The physical components of the
system and the environment are described using this continuous-time formalism. On the other hand, the controller
is described in a discrete-event based formalism hence the name hybrid simulation model. Different approaches are
possible for the composition and execution of hybrid simulation models: (a) the creation of super-formalism, (b)
transformation to a common formalism and, (c) co-simulation.
The goal of generating a hybrid simulation model is to check certain functional properties of the interaction of the
control software with the physical plant. For example that the window is lowered 10 cm on detection of an obstacle
or to evaluate that the force on the object does not exceed a certain threshold. In this section we describe the
generation of a hybrid model of the power window using a set of transformations. We however do not describe how
this model is executed.

3.3.1 Transformation of the Environment Model into a Causal Block Diagram

In figure 20 we show the result of the transformation of the environment DSL model of figure 4 into a causal block
diagram. The model is encapsulated in a child block that allows hierarchical modeling so it can be used as a whole
when composing the full hybrid simulation model. The most important block involved in this model is a source
block that generates a sequence of output values. This sequence is based on a vector containing tuples of time and
output value. The block computes its output values based on a piecewise constant reconstruction of the signal based
on the input samples.
The transformation creates a ”sequence block” for each of the unique states in the environment model. The vector of
tuples inside a created block is based on the time defined in each state of the environmental model. As a parameter,
the transformation needs the translation between the event name (in the DSL) and the corresponding value that
can be used within the Causal Block Diagram. It also needs a default value when the event is not applied.
The generated model is encapsulated in a child-block. The child block encapsulates a set of blocks, replacing them
by a single block. It is used to hierarchically model the system and reduce the visual complexity. A child block can
have multiple input and output ports. These ports are linked to the in- and output-blocks within the submodel.
The model in figure 20 outputs all the signals to the parent model using the output ports.

13



Figure 17: Transformed Network Model

14



Figure 18: Uncomposed Petri Net Model of the Powerwindow Software

15



Figure 19: Transformed Composed Petri Net Model of the Powerwindow Software

16



Figure 20: Causal Block Diagram of the environment model

3.3.2 Transformation of the Plant Model into a Causal Block Diagram

The power window can be transformed into a continuous model of the behaviour of the up and down movement
of the window. Like in section 3.2.2 two models are generated from the DSL model. Both transformations use
information like window height, motor gain and window friction from the DSL model.
Figure 21 represents the model of the window without any obstacle detection. The model is a simple second order
model of the up- and downward-movement of the window. It outputs the position of the window so it can be
observed during simulation. As with the environment model, it is encapsulated in a child block. If the window is
not on top or bottom, the input and output commands for the up- and down-command are added together to get
a single up or down command for the motor. This is multiplied with a motor gain while the friction is subtracted
via a feedback loop. After integration of the acceleration we obtain the window speed from the input. The window
speed is integrated to get the window position. bit better.

Figure 21: Model of power window plant without an obstacle sensor

The window with simple obstacle detection is shown in figure 22. The logic of the model is similar to Figure 21. The
biggest difference is the output of the detected object when both an obstacle is present and the window is moving
up.
More refined models can be used to assess more detailed behaviour of the window or when more complex sensors
are used (for example to measure the force put on the window). These model can contain behaviour of gear and
lever ratios, joints and other mechanical or electromechanical components.

17



Figure 22: Model of power window plant with an object detection

3.3.3 Encapsulation of the Control Models

To allow the statechart to be used in a Causal Block Diagram, it needs to be encapsulated. The encapsulation of the
statechart requires 3 blocks as seen in figure 23. The first is the State Event Locator (SEL). This block translates
incoming signals into events so they can be fired by the statechart. The second block contains the statechart defined
in 7. Finally actions have to be translated back to the continuous domain by the transducer block. Both the SEL
and transducer block contain a lookup table that require input from the modeler.

Figure 23: Encapsulated control

3.3.4 Transformation of the Network Model

The transformation of the network model is similar to the transformation defined in section 3.2.4.

3.3.5 Composition Transformation

The composition transformation composes the different models obtained in sections 3.3.1,3.3.2 and 3.3.3 using the
network model. The name of the ports of the different child blocks match the name of the ports in the network
model and can thus be matched easily.
When a component in the network diagram has multiple input components on the same port, a new component
needs to be created. This component, the arbiter, decides the value to pass in case of a conflict. Since the value
to pass can depend on all incoming ports of the component, the arbiter is set between this component and all its

18



incoming components. The content of this arbiter can be defined in CBDs or statecharts. Depending on the choice,
this should also be encapsulated. In our case the motor commands of the passenger window have multiple inputs.
The arbiter is set in between all the incoming control models of the passenger window side.
The composed model can be seen in figure 24. Since the formalism need input values on all of the defined input
ports, the unconnected ports need to be connected to a default value. In this case the non issued commands for the
controller parts are given a no action value.

Figure 24: Composition of the full hybrid simulation model

3.4 Deployment Activities

This section is devoted to the exploration of the deployment space. During the process of deployment onto hardware
a plethora of configuration choices have to be made in the middleware. These choices range from the mapping of
software components to a hardware platform. But also lower level decisions like mapping of software functions onto
tasks and assigning these tasks a priority. On the network side we have similar choices like the mapping of signals
to messages and low level parameters that affect the sending and receiving of messages on the bus.
As a deployment platform we will use the AUTOSAR platform. To keep complexity under control and to create
a competitive market for automotive software components, some leading automotive companies created the AU-
TOSAR consortium [3]. The AUTOSAR technical goals include modularity, scalability, transferability and reusabil-
ity of functional components. To achieve these goals, the AUTOSAR initiative has a dual focus. On the one hand
it defines an open platform (middleware) for automotive embedded software through standardized interfaces. On
the other hand it provides a method to create automotive embedded systems. Using AUTOSAR, software can be
developed mostly independently from the platform it will be deployed on.
The deployment space exploration consists out of 4 independent parts: (a) converting the statecharts to an AU-
TOSAR software component diagram, (b) generation of a calibration infrastructure, (c) the deployment space
exploration and (d) code generation activities.

19



3.4.1 Converting statecharts to an AUTOSAR software component model

The functional model of AUTOSAR consists of a set of atomic software components. These components can interact
with each other using ports. The service or data provided or required by a port are defined by its interface. This can
be either a data-oriented communication mechanism (sender/receiver interface) or a service-oriented communication
mechanism (client/server interface). The data-oriented interface can support 2 types of semantics. The first is “last-
is-best”, where only the last received value is stored. The other is a queued version where the data is stored in a
queue until it is read. Each software component defines its behaviour by means of a set of runnables. A runnable is a
function that can be executed in response to events, for example from a timer or due to the reception or transmission
of a data element.
From the statechart a software component is generated containing the logic in a single runnable. Though for every
incoming port to the SEL block and outgoing port in the transducer block, a sensor-actuator block is created.
These sensor-actuator blocks can access the hardware of the platform (for example an Analog-Digital converter or a
general purpose input-output pin). The logic in these blocks contains a function to: 1) translate the electrical signal
values coming from the sensor to an engineering value; or 2) on the actuator side to convert the engineering value
to an electrical signal.
Other information must be added as well this includes the events triggering the components and datatypes exchanged
between the components have to be set.

SWC

ControlDrv

SWC

CmdUp

SWC

UpDrv

SWC

CmdDown

SWC

CmdStop

Figure 25: AUTOSAR software component model

figure 25 shows the generated AUTOSAR component diagram of the driver side. The passenger part is omitted from
the model. All the software components contain a single runnable. Since the hybrid simulation model was executed
in a 1 ms loop, the software functions are triggered every milisecond.

3.4.2 Calibration infrastructure generation

The exploration of the deployment space relies heavily on simulation and analysis. A crucial step in this process is
the calibration of the models involved. Parameters to be estimated are for example network throughput, memory
consumption and execution time of the different software components. This information can be obtained with data-
sheets, low-level simulation or with the actual hardware. The state of art obtains the values using a combination of
execution and analysis. Today, the state of the art obtains the calibration parameters by instrumenting application
source code to record the execution times (or other parameters) of the different components and executing them on
either the real hardware or on a cycle-true simulation of the hardware. Calibration can be done either before or during
simulation. Since a software system is composed of multiple software components, the output value of a component
can be propagated to a downstream component, so it does not need to be provided explicitly. Input components
however still need an input that reflects the actual operation of the system under different operational conditions.
However pure analytical methods are also available in the real-time community based on abstract processor models.
For calibration of performance models of cyber-physical systems, that have a tight combination of the physical
and computational components of the system, the input values of the software input components originate in the
environment of the system and in the feedback loops that exist between the computational and physical components.
As a consequence, a trace-driven approach to supply the input components with input signals is not feasible due to
the effects of the software on the physical components and vice versa. Using the models developed in the previous
section, we can generate a calibration infrastructure to measure the execution times, memory consumption, energy
consumption, etc.

20



In our example we will use the target hardware to run the computational components of the system while using a host
computer to execute a the simulation models of the environment and plant. Signals generated by the environment
and plant are transmitted by a bus, for example a serial connection, to the target board. The target board executes
the computational components while measuring the calibration parameters. These are transmitted back to the host
computer together with the output values that are used by the plant model. To synthesise this infrastructure three
transformations are used. The models and code run in virtual time where the host computer is used to synchronize
the time between the models. This is not a problem since we are interested in the properties of the basic blocks and
not in the behaviour of the overall system.
Instrumented code can be synthesised from the AUTOSAR software components. These instrumentations measure
certain properties of the AUTOSAR basic block. The instrumentation uses a call to a tiny middleware to read out
sensors (like a timer, instruction counter, etc.). Also a small run-time environment is generated that will create the
buffers for the communication signals and trigger the software functions at the right time. Also the basic blocks are
executed in an atomic way so no effects from interrupts or preemptions can distort the measurement. In Listing 1
a small example of an instrumentation is shown.

Listing 1: Example instrumented code of a sensor-actuator component
{

startMeasure1 ( ) ; /∗ Instrumented code∗/ s ta tu s = CmdUp RunRead ( ) ;
stopMeasure1 ( ) ; /∗ Instrumented ∗/ TxDistr ibut ion ( ID CmdUpSensor RunRead ,
g e t I n t e r va l 1 ( ) ) ; /∗ Instrumented∗/

}

From the environment and plant models a simulator is generated. This is very similar to the generation of the hybrid
simulation model in section 3.3.
Finally from the network model and hardware model the infrastructure is generated that captures, transmits and
receives values on the host computer and target board. A template middleware is needed for each used target board
involved in the hardware model.
When the measurements are collected from the calibration infrastructure, the results are annotated in a performance
model. This performance model combines the type of processor with the software functions within a software
component.

Execution Time (µs) Distribution
20.000 7500
20.875 7499
21.375 1

Table 1: Example of a performance annotation between the ControlDrv and the MPC5567 hardware type

3.4.3 Deployment space exploration

In our example we will use an automatic deployment space exploration technique. It uses a platform-based approach
by defining three different abstraction levels. At every level a transformation is defined to evaluate the real-time
properties of the configuration.
At the first abstraction level the architecture is explored. The transformation maps the software components to
the defined hardware components in the hardware model. It needs, as an input, a hardware model of the different
components. Note that in more complex explorations this hardware model can also change. Changes include the
number of hardware components, the type of processor, the type and number of communication buses, etc. figure
26 shows an example hardware model.
Since an AUTOSAR software component is atomic, it needs to be mapped to a single hardware component inde-
pendent of the number of software functions in the software component. Sensor-actuator components are special
since they need to be in the vicinity of their respective sensor or actuator. The system architect pre-maps these
components. Normal software components can be mapped to any hardware platform. figure 27 shows a possible
configuration of the mapping between the hardware model shown in figure 26 and the software component model in
figure 25. Signals that are communicated between software components mapped to a different hardware component
result in a signal transmitted on the bus.
The configuration can be evaluated using a bin packing check. As input it uses the performance model and architec-

21



DrvDoor
MPC5567

BodyLogic
MPC5567

PsgDoor
MPC5567

Body
CAN

Figure 26: An example hardware model

SWC

ControlDrv

SWC

CmdUp

SWC

UpDrv

SWC

CmdDown

SWC

CmdStop

SWC

DownDrv

DrvDoor

MPC5567

BodyLogic

MPC5567

PsgDoor

MPC5567

Body

CAN

Figure 27: The software components mapped to the hardware model

ture model. The bin packing check is a simple algebraic equation to evaluate the usage of a hardware component.
The algorithm calculates the smallest common multiple of the periods of the different software functions (functions
with data-sent or data-receive events are assigned the period of their respective parent). For each hardware compo-
nent the worst-case execution times of the mapped software functions are added (multiplied by the number of times
executed in this time-frame). Dividing this time with the least common multiple is an indication of the usage of the
hardware component. The same is done for the signals on the bus (without the overhead caused by frame headers
and trailers). An example of the bin packing check for the BodyLogic component with the mapping of figure 27 can
be seen below:

...

Usage of Processor BodyLogic = ((1 ∗ (21.375/1000))/1) ∗ 100 = 2.1375%
...

The second step is the deployment exploration process is the mapping of the software functions to tasks on the
operating system and assigning them a priority (the AUTOSAR operating system uses a fixed priority preemptive
scheduler). Also depending on the bus type, the signals are mapped to messages on the bus and assigned a priority

22



(in case of an event-triggered bus) or a slot (in case of time-triggered bus). Properties of signals and messages are set.
figure 3.4.3 shows a partial deployment model build using the eclipse modeling framework. The software functions
are mapped to tasks. All properties of the task are set. The signals are also mapped to messages and assigned their
properties.

Figure 28: An example of a partial deployment. The example is made with an reduced version of the AUTOSAR
meta-model in e-core.

Configurations at this level of abstraction can be checked using schedulabilty analysis.
Finally the low-level deployment starts. This is done by defining hardware buffers for the reception and transmission
of messages. Since the hardware platform only has a limited amount of buffers in the communication controller the
mapping is not a one-to-one mapping. The drivers and interfaces of the communication stack are configured and
software buffers are defined if needed. Some hardware-specific options are also configured. figure 3.4.3 shows a full
deployment configuration.
The last method of evaluation is a low-level deployment simulation. In our example we use a DEVS deployment
simulation model. In Listing 2 a code snippet from an atomic DEVS model can be seen. The coupled DEVS of part
of the deployment is shown in figure 3.4.3.

Listing 2: Example of an atomic DEVS model
c lass CanBusDEVS(AtomicDEVS ) :

def i n i t ( s e l f , name , speed ) :
AtomicDEVS . i n i t ( s e l f , name)
s e l f . s t a t e = CanBus( speed )
s e l f . INFRAMES = s e l f . addInPort ( ”CANFramesIn” )
s e l f .NOTIFY = s e l f . addOutPort ( ”CANBusIdle” )
s e l f .OUTFRAMES = s e l f . addOutPort ( ”CANOutFrames” )

def i n tTran s i t i on ( s e l f ) :
s e l f . s t a t e . on Inte rna l ( )
return s e l f . s t a t e

def extTrans i t i on ( s e l f ) :
inFrame = s e l f . peek ( s e l f . INFRAMES)
s e l f . s t a t e . onExternal ( inFrame , s e l f . e lapsed )
return s e l f . s t a t e

def timeAdvance ( s e l f ) :
return s e l f . s t a t e . getTimeLeft ( )

def outputFnc ( s e l f ) :
out = s e l f . s t a t e . getOutput ( )
i f out i s not None :

s e l f . poke ( s e l f .OUTFRAMES, out )
s e l f . poke ( s e l f .NOTIFY, out )

3.4.4 Code generation

The final step is the generation of the code that runs on the target platforms. This includes the generation of the
middleware (adapted for the application), the application source code and the run-time environment to glue the

23



Figure 29: An example of full deployment. The example is made with an reduced version of the AUTOSAR meta-
model in e-core.

middleware and application together. Details of this transformations can be found in the AUTOSAR specifications.

4 On the Transformations Required to Develop the Power Window

In this section we take a look at the transformations and their properties for building the power window system. The
transformations are grouped in scenarios that focus on a single purpose. For each of these scenarios we first show a
transformation graph. This graph shows visually the models (and their respective formalisms) and transformations
between the models. Some transformations are shared among the different scenarios, in this case we will explain the
transformation only the first time.

4.1 Scenario 1 – Safety Analysis

Figure 4.1 shows the models and transformations involved for creating the safety analysis model.

4.1.1 Environment DL DSL Models into Modular Petri Nets

Source: Environment DSL
Target: Modular Petri Net
Type Classifier: Exogenous, Vertical (refinement), Non-Parametric, Single Input, Single Output;
Rationale: The environment DL DSL allows declaring a set of activities being performed by multiple actors in
a context for the plant and control. The transformation will give semantics to the environment DSL in Petri
Nets by translating all the syntactically defined operators of the language as well as input and output events into
communication with ports of the module;
Properties to Verify:

• Structural preservation in terms of the Communication Sequence blocks – sequences of communications will

24



Drv_Door

timing 
event gen

Tx-Buffer Rx-Buffer

BodyLogic

timing 
event gen

Tx-Buffer Rx-Buffer

Body

Figure 30: Example of a coupled DEVS model

Figure 31: Transformation graph for generating the safety analysis model

correspond to sequences of transitions in modular Petri Nets;
• Correct generation of the semantics of the parallel, sequential and alternative operators;
• Correct generation of the module ports and correct connection of the generated Petri Net transitions with the

generated ports.

4.1.2 Control DL DSL Models into Modular Petri Nets

Source: Control DSL
Target: Modular Petri Net
Type Classifier: Exogenous, Horizontal, Parametric, Single Input, Multiple Outputs
Rationale: The control DSL is a behavioural language, in the style of UML statecharts. Because of that the
translation into Petri Nets is straightforward, with statechart states translated into Petri Nets places and statechart
transitions translated into Petri Net transitions. Modularity information also has to be added. Takes as parameters
the Plant model;
Properties to Verify:

• Structural preservation in the sense that all Control DSL states are transformed into modular Petri Net
places, all transitions Control DSL transitions are transformed into modular Petri Net transitions, and their
connections are rebuilt properly;

25



• Reachability preservation in the sense that all reachable states in the statechart should still be reachable in
the corresponding places of the modular Petri Net;

• The resulting modular Petri Net is 1-safe;
• Correct generation of the module ports and correct connection of the generated Petri Net transitions with the

generated ports.

4.1.3 Powerwindow (Plant) DL DSL Models into Modular Petri Nets

Source: Powerwindow DL
Target: Modular Petri Net
Type Classifier: Exogenous, Vertical (refinement), Non-Parametric, Single Output, Multiple Outputs
Rationale: The Powerwindow DL is a purely declarative language stating the hardware components of a power-
window car setup. From this setup we generate plant models which define the discrete behavior in terms of window
position of the powerwindows involved in the setup;
Properties to Verify:

• All the semantics are added by the transformation itself, so only the outputs need to be verified. In this
case there is very little variability because a simple plant can be generated (without sensor), a plant with an
infrared sensor or a plant with a force detecting sensor. The proof can be achieved exhaustively by showing
that each of the three generated plants is the correct one;

• Correct generation of the module ports and correct connection of the generated Petri Net transitions with the
generated ports.

4.1.4 Network DSL Models into Network PN Models

Source: Network DSL
Target: Network DSL
Type Classifier: Endogenous, Vertical (refinement), Parametric, Single Input, Single Output;
Rationale: The Network DL allows connecting components in the various DSLs. It does not have semantics other
than the relations and their directionality. The semantics are given by the transformation itself parametrized by all
the DSL models. The input network may be heavily modified, with new components at the control and plant level,
with new ports and new relations being added. Takes as parameters all the powerwindow DSL models;
Properties to Verify:

• the newly created ports in the transformed network components should be correctly expanded from the initial
window movement ports in the DSL model modules (in a macro expansion fashion); new ports in the control
components and connections between those ports need to be created in case a lockout switch exists in the
plant;

• the number of controller components with obstacle detection sensor to be generated should be the same as the
number of powerwindows without obstacle detection sensor in the plant; likewise for the number of controller
components without obstacle detection;

• the number of generated plant components should be the same as the number of powerwindows defined in the
plant DSL model.

4.1.5 Composition of the obtained Petri Nets using the Network PN Model

Source: Modular Petri Nets, Network DSL
Target: Petri Nets
Type Classifier: Endogenous, Vertical (refinement), Non-Parametric, Multiple Inputs, Single Output;
Rationale: This composition transformation takes as input all the Modular Petri Nets models plus the network
model generated from phase 1 and creates an integrated Petri Net with the whole system;
Properties to Verify:

• Structural preservation of the input Petri Nets;
• All structurally preserved components nets remain 1-safe;
• Reachability is preserved in each of the preserved component nets;
• Safety is preserved in the sense that no tokens are introduced in the token game of each component net;

26



• New parts of the net introduced by the transformation connect the components properly according to the
network model. For example it is necessary to verify the dominant behavior of driver button controller of the
passenger window towards the passenger button controller of the passenger window. Also, it is necessary to
verify that the kind of composition performed is the one necessary one for each part of the net. For example,
while the composition between the environment and the control components is achieved by introducing an
intermediate place between connecting transitions, the composition between the control components and the
plant is achieved by connecting control transitions to plant places.

4.2 Scenario 2: Hybrid Simulation

In Figure 4.2, the models and transformations for generating a hybrid simulation model are shown.

Figure 32: Transformation graph for generating the hybrid simulation model

4.2.1 Generate Continuous Power Window Environment Model from DSL model

Source: Environment DSL
Target: Causal Block Diagram
Type Classifier: Exogenous, Vertical (refinement), Parametric, Single Input, Single Output
Rationale: Continuous semantics of the environmental domain specific model. The different activities are translated
to a signal value. Each activity requires a default signal value and an applied signal value;
Properties to Verify:

• Structural preservation in the sense that all unique activities are transformed into a sequence block;
• Correct generation of the time behaviour of the sequence block.

4.2.2 Generate Power Window Plant CBD Model from DSL model

Source: Plant DSL
Target: Causal Block Diagram
Type Classifier: Exogenous, Vertical (refinement)
Rationale: Denotational semantics of the power window plant domain specific model. The transformation uses
window properties described in the DSL (motor gain, window height, friction, ...) to create a continuous model of
the window behaviour;
Properties to Verify:

• The continuous semantics are added by the transformation itself, so only the outputs need to be verified. In
this case there is very little variability because a simple plant can be generated (without sensor), a plant with
an infrared sensor or a plant with a force detecting sensor.

27



4.2.3 Encapsulation of statecharts

Source: Control DL model
Target: encapsulated statechart
Type Classifier: Exogenous, Vertical (refinement)
Rationale: To use a statechart in a causal block diagram, continuous signals have to be translated to discrete
events. In the opposite direction this is also true, actions need to be translated to (continuous) signal values. The
state event location and transducer blocks are used for this purpose. They contain a lookup table to allow this
translation;
Properties to Verify:

• Every statechart needs to be encapsulated by a child block including SEL and transducer blocks;
• Structural preservation between the Control DL statechart and the encapsulated statechart;
• There is a bijection between input events on the Control DL statechart and the SEL table inputs;
• There is a bijection between output events on the Control DL statechart and the transducer table outputs.

4.2.4 Network DSL Models into Network CBD Models

ditto section 4.1.4. Except, merged statecharts are shown as a single blocks and all ports should be connected.

4.2.5 Composition of the the models obtained from phase 1 using the Network CBD Model

Source: network DL
Target: hybrid CBD model
Type Classifier: Exogenous, Vertical (refinement)
Rationale: Composition of the full hybrid simulation model using the generated child blocks from phase 1. The
connections are based on the refined network model;
Properties to Verify:

• Structural preservation of the number of child blocks;
• Verification that a import of a block has a single input;
• Verification that no unconnected imports exist;
• New parts of the model introduced by the transformation connect the components properly according to the

network model. For example it is necessary to verify the dominant behaviour of driver button controller of the
passenger window towards the passenger button controller of the passenger window. This is the verification
of the arbiter component.

4.3 Scenario 3 – AUTOSAR software component model

Figure 4.3 shows the transformations and models involved for generating an AUTOSAR software component model.

Figure 33: Transformation graph for generating the AUTOSAR component model

28



4.3.1 AUTOSAR Software Model

Source: Control models, network model
Target: AUTOSAR MM: Software part
Type Classifier: Exogenous, Vertical(refinement)
Rationale: The software parts of the developed models are transformed to the AUTOSAR MM so they can be
used to be deployed on the AUTOSAR middleware;
Properties to Verify:

• Structural preservation: All logic components are translated to an AUTOSAR software component with a
single runnable, including the arbiter components;

• Every incoming signal from the environment or plant and every outgoing signal to the plant models is translated
to a sensor-actuator component.

4.4 Scenario 4 – Generate Calibration Infrastructure

In Figure 4.4 the transformation graph for generating the calibration infrastructure is depicted.

Figure 34: Transformation graph for generating a calibration infrastructure

4.4.1 Generate Instrumented Software Code

Source: AUTOSAR MM: Software part
Target: C-code
Type Classifier: Exogenous, Vertical(synthesis)
Rationale: C-code is generated for the software functions with instrumented calls, a small run-time environment;
Properties to Verify:

• Source and header file of the software function code (all software functions have a c-function) have the name
of ”softwareComponent SoftwareFunction”;

• An encapsulated call with instrumentation is generated (also in header file) with the name equal to
“RTE softwareComponent SoftwareFunction”;

29



• A function to call the instrumented software functions in the correct order (based on a precedence relation
using a topological sort algorithm);

• For every receive port a buffer is created and rte functions to read and write this buffer.

4.4.2 Generate Plant Simulation Model

This transformation is equal to the transformation of Section 4.2.2.

4.4.3 Generate Environment Model

This transformation is equal to the transformation of Section 4.2.1.

4.4.4 Generate Infrastructure

Source: Network Model
Target: C-code, other code for interface depending on simulation tools
Type Classifier: Exogenous, Vertical(synthesis)
Rationale: The interface code is generated for the communication between host and target, and the time synchro-
nisation;
Properties to Verify:

• Structural preservation of the network links between the involved components.

4.5 Scenario 5 – Deployment Space Exploration

The transformation graph of the deployment space exploration can be seen in Figure 4.5.

Figure 35: Transformation graph for exploring the deployment space

30



4.5.1 Map Software To Hardware (Architecture Space Exploration)

Source: AUTOSAR MM: Software part, AUTOSAR MM: Hardware part
Target: AUTOSAR MM: System part
Type Classifier: Endogenous, Vertical (refinement)
Rationale: This transformation maps software components to a hardware platform. Some components (especially
sensor-actuator components) are already mapped because of the spacial requirements of the system, though un-
mapped components can be freely distributed over the available hardware platforms. The transformation can be
used to explore the design space by using for example backtracking mechanisms in the transformation. To evaluate
a solution a simple bin packing check can be used;
Properties to Verify:

• Structural preservation of both the software and hardware model;
• All software components are mapped to a single hardware component.

4.5.2 Bin Packing Analysis

Source: AUTOSAR MM: System part, Performance Model
Target: Algebraic Equations
Type Classifier: Exogenous, Horizontal
Rationale: The algebraic equation is a first check to evaluate the mapping of the different AUTOSAR application
software components on the different hardware components. The equations adds the execution times of the different
functions on a hardware platform within a certain time-frame. This time-frame is the smallest common multiple of
the periods of all these different functions. The execution time of all the functions will exceed this smallest common
multiple in a non-feasible solution;
Properties to Verify:

• There is a bijection between hardware components (ECU and Bus) and generated equations;
• Every software function in the software components is referred to once by one single bin packing equation.

4.5.3 Detailed Deployment Space Exploration (part 1)

Source: AUTOSAR MM: System Part
Target: AUTOSAR MM: ECU Part
Type Classifier: Endogenous, Vertical (refinement)
Rationale: In this transformation task and bus information is added. As with the architecture space exploration,
this transformation can be used to explore the design space. The functions mapped to a specific controller are
combined to tasks on the real-time operating system. The task is assigned a priority in the case of a priority
scheduler or an execution slot when the RTOS is time-triggered. A similar procedure is done for the communication
signals. These are combined into frames that can be transmitted on the bus. The frame is assigned a priority in
case of an event-triggered bus like CAN or a transmission slot in case of time-triggered bus;
Properties to Verify:

• Every software function is mapped to a task with a (not unique) priority, functions mapped to the same ECU
can be mapped to an existing task;

• Every signal is mapped to a message (with a unique priority or unique slot), signals originating on the same
ECU can be mapped to an existing message;

• No message can exceed the maximum message size (defined by the protocol or parameters of the network);
• All properties of signals and messages are set (transmission modes, etc.).

4.5.4 Schedulability Analysis

Source: AUTOSAR MM: ECU part (Partial), Performance model
Target: Algebraic Equations
Type Classifier: Exogenous, Horizontal
Rationale: Schedulability analysis is a technique to assess the real-time characteristics of a software system. The
transformation builds the equations for every task and message in the model;
Properties to Verify:

• Equation for every task and message defined in the model.

31



4.5.5 Detailed Deployment Space Exploration (part 2)

Source: AUTOSAR MM: System part
Target: AUTOSAR MM: ECU part
Type Classifier: Endogenous, Vertical (refinement)
Rationale: When the system is schedulable other deployment decisions can be made like the number of hardware
and software buffers to assign to a frame. Also low-level driver information is added. These decisions can be evaluated
using a full deployment simulation;
Properties to Verify:

• Every message transmitted or received on the ECU has a mapping to a buffer;
• All properties of the low-level drivers and interfaces are set.

4.5.6 Full Deployment Simulation

Source: AUTOSAR MM: ECU Models (Full), Performance model
Target: DEVS Simulation Model
Type Classifier: Exogenous, Horizontal
Rationale: The full deployment solution can be evaluated using a simulation. As an example simulation model we
use a DEVS-based AUTOSAR deployment performance model;
Properties to Verify:

• A DEVS processor model is created for each ECU, all parameters are set correct;
• A DEVS bus model is created for each bus, all parameters are set correct;
• A DEVS output HW buffer is created for each ECU that is sending messages. The size and behaviour of the

buffer depends on the parameters of the model;
• A DEVS input HW buffer is created for each ECU that is receiving messages; The size and behaviour of the

buffer depends on the parameters of the model;
• All ports are connected.

4.6 Scenario 6 – Code Synthesis

Figure 4.6 shows the needed transformations to generate the code of the different ECUs.

4.6.1 Generate Application Software Code

Source: AUTOSAR MM: Software Component Part
Target: C-code
Type Classifier: Exogenous, Vertical(synthesis)
Rationale: generate the application source code for the ECUs;
Properties to Verify:

• For each defined function a c-code function is created;
• Naming conventions of AUTOSAR RTE are properly followed.

4.6.2 Generate Run-time Environment Code

Source: AUTOSAR MM: system part
Target: C-code
Type Classifier: Exogenous, Vertical(synthesis)
Rationale: Generation of the glue between the middleware and the application. This contains the code to trigger
the execution of the runnable and the buffers of the signals. A specific RTE is generated for every ECU;
Properties to Verify:

• For each RTE code is generated;
• Buffers and access function are created only for the receive signals following the RTE naming conventions;
• RTE code is created for every transmitted signal (internal and external) following the RTE naming convention;
• RTE trigger code is created for every function mapped to the ECU following the naming convention.

32



Figure 36: Transformation graph for synthesis of the ECU code

4.6.3 Generate middleware code

Source: AUTOSAR MM: ECU part
Target: C-code
Type Classifier: Exogenous, Vertical(synthesis)
Rationale: This generates a tailored middleware for each ECU.
Properties to Verify:

• For each ECU defined, the middleware code is generated;
• For every module referenced in the ECU module, code is generated.

4.7 Putting it all together

In Figure 4.6.1 all the transformations discussed can be seen.

References

[1] D. Akehurst and S. Kent. A relational approach to defining transformations in a metamodel. pages 243–258.
Springer, 2002.

[2] ATLAS. ATLAS transformation language, 2008. http://www.eclipse.org/m2m/atl/.

[3] AUTOSAR. Official webpage. http://www.autosar.org, 2010.

[4] S. Cook, G. Jones, S. Kent, and A. C. Wils. Domain-Specific Development with Visual Studio DSL Tools.
Addison-Wesley Professional, 2007.

33

http://www.eclipse.org/m2m/atl/
http://www.autosar.org


Figure 37: The full transformation graph

[5] J. de Lara and H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-Modelling. In FASE ’02:
Proceedings of the 5th International Conference on Fundamental Approaches to Software Engineering, pages
174–188. Springer-Verlag, 2002.

[6] P. Dhaussy and J.-C. Roger. Spécification du langage CDL v.1 : Syntaxe et sémantique (documentation
provisoire). Technical report, LISyC, ENSTA Bretagne, 2011.

[7] R. C. Dorf. Modern Control Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 12th
edition, 2011.

[8] G. Dupe, M. Belaunde, R. Perruchon, H. Besnard, F. Guillard, and V. Oliveres. SmartQVT. http://smartqvt.
elibel.tm.fr/.

[9] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation (Monographs
in Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

34

http://smartqvt.elibel.tm.fr/
http://smartqvt.elibel.tm.fr/


[10] L. Lúcio, B. Barroca, and V. Amaral. A technique for automatic validation of model transformations. In
Proceedings of the 13th international conference on Model driven engineering languages and systems: Part I,
MODELS’10, pages 136–150. Springer-Verlag, 2010.

[11] Metacase. Domain-Specific Modeling with MetaEdit+: 10 times faster than UML. 2009.

[12] W. Moore, D. Dean, A. Gerber, G. Wagenknecht, and P. Vanderheyden. Eclipse Development using the
Graphical Editing Framework and the Eclipse Modeling Framework. IBM RedBooks, February 2004.

[13] P. J. Mosterman and H. Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction.
Simulation, 80(9):433–450, 2004.

[14] A. Narayanan and G. Karsai. Towards verifying model transformations. Electron. Notes Theor. Comput. Sci.,
211:191–200, April 2008.

[15] A. Narayanan, G. Karsai, C. Ermel, R. Heckel, J. de Lara, T. Margaria, J. Padberg, and G. Taentzer. Verifying
model transformations by structural correspondence. Electronic Communications of the EASST, 10, 2008.

[16] A. Raji, P. Dhaussy, and B. Aizier. Automating context description for software formal verification. In
MoDeVVa Workshop, Oct. 2010.

[17] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-driven software develop-
ment. IEEE Software, 20:42–45, September 2003.

[18] Transport Canada. Technical standards document no. 118, revision 1, power-operated window, partition, and
roof panel systems, 2009. http://www.tc.gc.ca/eng/roadsafety/safevehicles-mvstm tsd-tsd-1180rev1
e-758.htm.

[19] US Department of Transportation. RIN 2127-AG36 federal motor vehicle safety standards; power-operated win-
dow, partition, and roof panel systems, 2004. http://www.nhtsa.gov/cars/rules/rulings/safety switch/
SaferSwitchesFinalRule.html.

[20] D. Varró and A. Pataricza. Automated formal verification of model tranformations, 2003.

35

http://www.tc.gc.ca/eng/roadsafety/safevehicles-mvstm_tsd-tsd-1180rev1_e-758.htm
http://www.tc.gc.ca/eng/roadsafety/safevehicles-mvstm_tsd-tsd-1180rev1_e-758.htm
http://www.nhtsa.gov/cars/rules/rulings/safety_switch/SaferSwitchesFinalRule.html
http://www.nhtsa.gov/cars/rules/rulings/safety_switch/SaferSwitchesFinalRule.html

	Introduction and Problem Statement
	Background Concepts
	Models and Metamodels
	Domain Specific Modeling
	Multi-Paradigm Modeling
	Model Transformations

	Engineering the Power Window Software
	Modeling Activities
	Power Window Description Language
	Environment Description Language
	Control Description Language
	Network Description Language

	Verification Activities
	Transformation of the Environment Model into Petri Nets
	Transformation of the Plant Model into Petri Nets
	Transformation of the Control Models into Petri Nets
	Transformation of the Network Model
	Composition Transformation

	Simulation Activities
	Transformation of the Environment Model into a Causal Block Diagram
	Transformation of the Plant Model into a Causal Block Diagram
	Encapsulation of the Control Models
	Transformation of the Network Model
	Composition Transformation

	Deployment Activities
	Converting statecharts to an AUTOSAR software component model
	Calibration infrastructure generation
	Deployment space exploration
	Code generation


	On the Transformations Required to Develop the Power Window
	Scenario 1 -- Safety Analysis
	Environment DL DSL Models into Modular Petri Nets
	Control DL DSL Models into Modular Petri Nets
	Powerwindow (Plant) DL DSL Models into Modular Petri Nets
	Network DSL Models into Network PN Models
	Composition of the obtained Petri Nets using the Network PN Model

	Scenario 2: Hybrid Simulation
	Generate Continuous Power Window Environment Model from DSL model
	Generate Power Window Plant CBD Model from DSL model 
	Encapsulation of statecharts
	Network DSL Models into Network CBD Models
	Composition of the the models obtained from phase 1 using the Network CBD Model

	Scenario 3 -- AUTOSAR software component model
	AUTOSAR Software Model

	Scenario 4 -- Generate Calibration Infrastructure
	Generate Instrumented Software Code
	Generate Plant Simulation Model
	Generate Environment Model
	Generate Infrastructure

	Scenario 5 -- Deployment Space Exploration
	Map Software To Hardware (Architecture Space Exploration)
	Bin Packing Analysis
	Detailed Deployment Space Exploration (part 1)
	Schedulability Analysis
	Detailed Deployment Space Exploration (part 2)
	Full Deployment Simulation

	Scenario 6 -- Code Synthesis
	Generate Application Software Code
	Generate Run-time Environment Code
	Generate middleware code

	Putting it all together


